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Introduction
Motivation

Background

“You are what when you eat”
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Newell's time scale.

Newell's time scale of human action

Scale Time S World
(sec) Units Y (theory)
107 Months
SOCIAL

6
10 Weeks BAND
10° Days
104 Hours Task

3 . RATIONAL
10 10 min Task BAND
10? Minutes Task
10" 10 sec Unit task

. COGNITIVE

0
10 1 sec Operations BAND
10" 100 ms Deliberate act
102 10 ms Neural circuit

3 BIOLOGICAL
10 1ms Neuron BAND
10 100 ps Organelle
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Behavioral biometrics.

The measure of human behavior for the purpose of identification or verification.
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Timestamped events and time intervals.

@ Timestamped events: keystrokes, touchscreen gestures,
financial transactions, source code contributions...

@ Given a series of events that occur at times tg, t1,...,ty

Time interval between events

Tn=th —th—1
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Why focus on timestamps?

Timestamps are truly ubiquitous

Timestamps are persistent

o

o

@ Timestamps are resilient to encryption and masking

@ Timestamps can generally be collected without cooperation
o

Timestamps can be incorporated into domain-specific models
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Problems.

|dentification Given a sequence of events, decide who they belong
to (1 out of N)

Verification Given a sequence of events with claimed
responsibility, decide whether the claim is legitimate

(binary classification)
Prediction Given a sequence of events, predict the time of a
future event
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Bursts of activity in human behavior.

[ AT T MR T e

Random process (Poisson process, exponential inter-event times)

| T I | L I[N

Bursty process (power-law inter-event times)

Barabasi, 2005
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Time intervals of a random vs. bursty process.
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Psychology of human timing.

Implicit and explicit timing
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Neurophysiology of human timing.

*ls

Praamstra, 2006 Wiener, 2011
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Datasets.

Description
Empirical patterns

Dataset Source Size Freq.(Hz) ‘
Keystroke fixed-text Monaco et al. (2013) 24k keystrokes, 60 users 4.4
Keystroke free-text Villani et al. (2006) 251k keystrokes, 56 users 3.8
Mobile Jain et al. (2014) 11k gestures, 52 users 31
Keypad Bakelman et al. (2013) 6.6k keystrokes, 30 users 2.9
Bitcoin transactions Reid et al. (2013) 239k transactions, 61 users 2.8x1074
Linux kernel commits Passos et al. (2014) 16k commits, 52 authors 2.6x10°°
White House visits Hudson (2015) 2.7k visits, 18 people 1.4x1076
Terrorist events LaFree et al. (2007) 1.8k events, 10 groups 2.8x10°7
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Keystroke.

Non-overlapping and overlapping keystrokes
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Bitcoin transaction.

Transaction 1 Transaction 2

——®0.75 BTC 1.0BTC -

Time t, Time t,

—0.25 BTC 15BTC
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Terrorist activity.

TD GLOBAL TERRORISM DATABASE

NATIONAL CONSORTIUM FOR THE
STUDY OF TERRORISM AND RESPONSES TO TERRORISM
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Heavy tails.

Description
Empirical patterns
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Preference for a log-normal.

Power law vs log-normal loglikelihood ratio tests
Dataset ‘ Power law ‘ Log-normal ‘
Keystroke (free) 0.00 (0.00) | 1.00 (1.00)
Keystroke (fixed) | 0.00 (0.00) | 1.00 (1.00)
Bitcoin 0.00 (0.00) | 1.00 (1.00)
Kernel commits 0.75 (0.56) | 0.25 (0.08)
) (1.00)
) (0.00)

White House visits | 0.00 (0.00 1.00 (1.00
Terrorist activity 0.70 (0.20) | 0.30 (0.00
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Time dependence.

Description

Empirical patterns
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Non-stationarity.
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Temporal

clustering.

Description

Empirical patterns
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Modeling approaches.

Observation window

/_A_\
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Time interval distribution.

Log-normal

_ )2
f(T;,u,,o)_TGlzn_exp< (Inv N)) >0
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Transitioning between hidden states.

Active Passive
z,=0

z=1
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Hidden Markov model.

0 1 2 T-1 T
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Partially-Observable Hidden Markov Model.

Partially-observable oo o
state
Hidden state 6 e o o o e a
Observations ° ° O e °

0 1 2 T-1 T
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POHMM as an extension to the HMM.

@ Introduces a dependency into the HMM to account for event
types (e.g., key names).

@ Can handle missing or incomplete observations by using the
marginal distributions.

@ Avoids overfitting through parameter mixing (or smoothing).
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Consistency.

To be consistent the model must be:
o Convergent
o Will our estimator always converge to a value?
@ Asymptotically unbiased

e Given a sample generated from a model with known
parameters, can we recover the model parameters as the size
of the sample increases?
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Residuals.
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Evaluation criteria.

o lIdentification: rank-1 classification accuracy (ACC).

o Verification: equal error rate (EER), the point on the ROC
curve where P(false accept) = P(false reject).

e Continuous verification: average maximum rejection time
(AMRT), the average number of events before an impostor is
detected without falsely rejecting the genuine user.
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Evaluation procedure.

Folds
1
5 Bl Reference
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3
: Query
K Bl
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Fitted model example.
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Keystroke experimental results.

Folds | Dichotomy POHMM p-value
Nursery rhymes 4 0.11 (0.04) | 0.00 (0.01) 0.003
Keystroke (fixed) 4 0.13 (0.02) | 0.08 (0.04) 0.041
Keystroke (free) 6 0.02 (0.01) | 0.06 (0.01) | 8.9x10°°
Keypad 20 | 0.11(0.03) | 0.05 (0.02) | 1.3x10 ¢
Mobile (w/o sensors) | 20 0.20 (0.03) | 0.10 (0.02) | 2.7x 104
Mobile (w/ sensors) | 20 0.01 (0.01) | 0.01 (0.01) 0.500
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Continuous verification.
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Bitcoin experimental results.

o Hidden states are partially observable through the transaction
direction (incoming or outgoing).

e 0.42 ACC

e 0.14 EER

e 139 AMRT
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Linux kernel commit experimental results.

o Hidden states are partially observable through the commit
intention (bug fix or feature addition).

0.17 ACC
0.36 EER
41 AMRT
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White House visit experimental results.

o Hidden states are partially observable through the size of the
group (small or large).

e 0.31 ACC
e 0.28 EER
e 19 AMRT
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Terrorist activity experimental results.

o Hidden states are partially observable through the group
intention.

0.15 ACC
0.45 EER
37 AMRT
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What about anonymity?

@ Timestamps can reveal your identity.

@ Encryption, VPN, TOR, etc., cannot prevent that.
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Masking temporal behavior.

Alice and Bob want to be anonymous.

Alice MIX Eve
° *—Pp 3? \-/‘-. o -
Bob MIX .
U oo ® > ’/\e » ’/\= o *®
S L
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Masking strategy properties.

Finite The expected delay between the user and the
arrival process should not grow unbounded.
Anonymous The mix should make it difficult to identify the
user.

Unpredictable | The mix should make it difficult to predict future
behavior.

John (Vinnie) Monaco Time Intervals as a Behavioral Biometric



Model specification
Modeling Experimental results

Proposed mixing strategies experimental results.

Masking capability increases as the tolerable lag increases.
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Conclusions

Questions.

Thank you
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