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Abstract

Timestamped events from human behavior are truly ubiquitous. In the Information Age,

most human-computer interactions generate timestamped events in some way. From the

keys pressed on a keyboard and the transmission of an email message, to the submission of

a research article through an online submission system, a timestamp is generated and stored

for each event. In many scenarios, timestamps can be observed without user cooperation or

knowledge, further increasing the ubiquity of human temporal behavior. It is thought that

temporal behavior is unique to an individual and the time intervals between events can be

utilized as a behavioral biometric.

This work introduces the concept of and methodology surrounding time interval bio-

metrics. Temporal behavioral patterns are analyzed and captured by a proposed generative

model, the partially observable hidden Markov model, which generalizes the well-known

hidden Markov model to account for partially observable hidden states through event types.

Experimental results on publicly available data, including keystrokes, Bitcoin transactions,

Linux kernel commits, White House visits, and terrorist activity, indicate a strong potential

for time intervals as a behavioral biometric and present an improvement over previously

published results. Along with these results comes greater incentive to remain anonymous,

and some strategies to conceal temporal behavior are proposed.
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Preface

There is a vast array of literature that attempts to model the way humans behave in time.

Temporal behavior occurs on a wide range of scales, from high-frequency actions, such as

individual neurons firing, to low-frequency group dynamics. Many works try to uncover

the underlying mechanisms that are responsible for human actions and understanding of

time. Fewer works analyze the individuality of human temporal behavior, and a literature

review finds no work that coherently analyzes temporal behavior over all scales for biomet-

ric applications. This work attempts to fill that void by analyzing human temporal behavior

across a range of time scales for the purpose of biometric identification and verification.

There has been much recent interest in keystroke dynamics, and as of now there are

several commercial systems available. There is generally a growing demand for secure

authentication and intrusion detection systems, with a recent focus on behavioral applica-

tions. Typing behavior is just one avenue for such a system, in which the timings between

keystrokes are thought to be individually unique. Since many applications require a key-

board to interact with, typing behavior is a natural choice of biometric modality to verify

the legitimacy of the end user. The aim of this work is to strengthen the current state-of-

the-art in keystroke dynamics and to open the door to other modalities for a safer and more

secure cyber space.

This dissertation was written primarily for biometrics professionals and assumes some

prior knowledge in statistics. It should be accessible to anyone familiar with biometrics and

may be of interest to those studying cyber security, group dynamics, and human behavior.
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Chapter 1

Introduction

“You are what when you eat”

Imagine an application that records the time when a person eats. Over several weeks,

circadian and weekly patterns would emerge, and if this data is available for several people,

individual differences in eating habits might also become apparent. Maybe some people

eat frequently throughout the day or eat early dinners on Sundays, while others adhere

to religious or cultural traditions that dictate eating schedules. Over time, the individual

eating behavior could be used to uniquely identify a person from month to month. This

type of application is not so far-fetched, as it is common to upload pictures of food to

social networks where the timestamps can be extracted from metadata or the image itself.

Minkowski was one of the first to suggest time as the fourth dimension of spacetime,

a theory later refined by Einstein. Now, time plays a critical role in human life. There

are a number of factors that determine how humans behave in time. Timed human actions

are subject to physiological processes, social norms, and workplace deadlines. There are

also various mechanisms that allow humans to reason about and reconstruct time. A major

scientific goal is to quantify the temporal behavior of humans (Barabási, 2005).

1
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1.1 Background

1.1.1 Biometrics

Many applications call for the identification or verification1 of an individual, such as bank

account access, border control, and police investigations linking a suspect to a crime. The

identification problem requires determining the identity of one person out of U possible

choices. Verification is a binary problem in which the legitimacy of a claimed identity

must be either verified or rejected. There are generally three ways through which a person

can be identified or verified.

1. Demonstration of knowledge: having secret knowledge, such as a password.

2. Demonstration of possession: having a unique item, such as a key or an access card.

3. Demonstration of being: having unique physiological or behavior characteristics.

Biometric recognition is concerned with individually-unique physiological and behavioral

characteristics. While knowledge and possession are transferable, physiological and be-

havioral characteristics are generally more difficult to reproduce. Biometric recognition

can often be seamlessly integrated into an application and requires little effort on behalf of

the user, whereas recognition through knowledge or possession places a burden on the user

to remember some information or locate an item. Despite this, biometric applications deal

with personal information and come at the expense of increased responsibility of the appli-

cation authority. If a password is compromised, it can easily be reset, and if token is lost,

it can be replaced. A biometric database may contain potentially sensitive information and

offers greater risk if compromised. One solution to this problem is homomorphic encryp-

tion, which would allow the application authority to securely manipulate biometric data

(Gentry et al., 2009), however these techniques are not yet practical due to computational

requirements.

1The term verification is used instead of authentication to emphasize both forensic and real-time applica-
tions. Authentication typically implies an explicit claim of identity, while verification is more generally the
process through which an identity is established (Wayman, 2009).
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Biometrics is multidisciplinary, drawing concepts from biology, statistics, machine

learning, computer science, and psychology. Biometric recognition requires that a physi-

ological or behavioral trait can be quantified in some way. There are numerous biometric

modalities utilized in practice, such as face, iris, and DNA, and many others that have

been proposed, such as ear shape, gait, and smell. In general, a biometric modality should

possess the following characteristics (Jain et al., 2004).

1. Ubiquitous: the modality is present for every person.

2. Permanent: the modality does not change over time.

3. Unique: the modality is measurably unique for each person.

A biometric modality is ubiquitous if it can be measured for every person and permanent if

that characteristic does not change over time. Finally, the biometric modality is unique if

any two individuals are measurably different. There are few biometric modalities that meet

all three criteria. DNA comes close since every person possesses it and a person’s DNA

will not change over time. With the exception of monozygotic (or identical) twins, DNA is

also distinct.

In practice, a biometric system must meet additional criteria to be of high utility. The

system must be computationally efficient, widely accepted, and difficult to circumvent. Al-

though DNA is difficult to reproduce, DNA analyses take at least several hours to complete

with most current methods on the scale of 24-72 hours (Hopwood et al., 2010). This limits

DNA to primarily forensic applications. On the other hand, fingerprints can be captured

and compared to a large database in seconds. Methods for liveliness detection are usually

employed to reduce the risk of spoofing, in which a fake fingerprint can be used to gain

unauthorized access (Schuckers, 2002).

Humans perform biometric recognition on a daily basis. When people meet face-to-

face, they are typically recognized by facial and voice characteristics. Over the phone,

recognition is performed by voice alone. In practice, both humans and computers are sub-

ject to differences in accuracy. For example in a face recognition task, varying levels of

accuracy are observed across forensic experts, industry experts, and laymen. Acting coop-

eratively, greater accuracy can be achieved. Using a simple fusion strategy, the accuracy of
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one expert can be obtained by two industry experts or four laymen (Phillips and O’toole,

2014; White et al., 2015).

1.1.2 Behavioral biometrics

Most current biometric modalities are physiological characteristics, such as face, finger-

print, and iris. Behavioral biometrics are concerned with measuring human behavior for

the purpose of identification or verification. While physiological biometrics capture only

spatial information, behavioral biometrics capture both spatial and temporal information.

For example, gait recognition aims to identify a person based on unique walking patterns.

The trajectory of the feet and various points on the legs through time are utilized to isolate

the individually-unique walking pattern.

Since behavioral biometrics require measurements over time, they cannot be captured

instantaneously. Despite this, behavioral biometrics offer a number of advantages. They

can be seamlessly integrated into an application by utilizing the interactions that naturally

occur and remain unobtrusive to the user. For example, typing behavior during an online

exam can be used to verify the identify of the test-taker. Utilizing behavior also allows

for continuous authentication, in which the interactions are continuously monitored for

suspicious activity. Consider an intrusion detection system on a mobile device. Figure 1.1

shows the touchscreen gestures of two subjects performing the same task. User A switches

between hands to navigate a web page, seen by the gestures densely clustered on the left

and right sides of the screen, while User B performs most gestures rather quickly with the

right hand.

A behavioral biometric can be either continuous or discrete. Continuous behavioral

biometrics utilize a sensor that detects some spatial information at fixed intervals, such as

gait measured by a video camera or voice measured by a microphone. Discrete behavioral

biometrics utilize a sensor that detects spatial information only when the user performs

some action, such as pressing a button. In this case, the time and location of the pressed

button are recorded. Discrete behavioral biometrics are event driven since they are only

measured when the user interacts with the system. This work is concerned only with the

discrete behavior.
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(a) User A (b) User B

Figure 1.1: Touchscreen gestures from two users, A (left) and B (right), performing the
same task. The users exhibit different touchscreen behaviors while navigating a web page.
(Alotaibi et al., 2014).

1.1.3 Time intervals

Time interval biometrics utilize the timestamps from a sequence of timed events for the

purpose of identification and verification. The time intervals, or the time between events,

is of interest. Let tn be the time of the nth event. The series of time intervals is given by

τn = tn− tn−1 . (1.1)

The original event times can be reconstructed from the time intervals and the time of the

first event, t0. In this work, the time intervals will be used to create a model of temporal

behavior. In the case an event has duration, i.e. it is not instantaneous, then tn marks the time

of onset. Events may also contain additional information, such as intensity and location,

which can be incorporated into the model to capture spatiotemporal behavior.

1.1.4 Psychology of time

Humans perform actions across a wide range of time scales, from the firing of individual

neurons approximately 200 times per second, to email correspondence several times a day,
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Scale Time units System World (theory) Example

107 months
Social band Email correspondence106 weeks

105 days

104 hours Task
Rational band Respond to one email103 10 min Task

102 minutes Task

101 10 sec Unit task
Cognitive band Type one word100 1 sec Operations

10−1 100 ms Deliberate act

10−2 10 ms Neural circuit
Biological band Muscle fiber response10−3 1 ms Neuron

10−4 100 μs Organelle

Table 1.1: Newell’s time scale of human action (Newell, 1994).

and the submission of a research paper which may occur only several times per year. Hu-

man actions occur in a hierarchy of time scales separated by orders of magnitude, with

low-frequency events emerging from many high-frequency ones. This is demonstrated by

Newell’s time scale of human action, shown in Table 1.1.

Actions can be involuntary, driven by physiological processes, or performed deliber-

ately by the conscious mind. Consider email correspondence, which requires actions on a

wide range of time scales. At the lowest level, neurotransmitters active the muscle fibers

in the hand to manipulate the mouse and keyboard. These signals are received at the fin-

gertips, which coordinate to strike each key in the correct sequence. The time an email

is finally sent depends on the daily schedule, reading speed, typing speed, and cognitive

processing capabilities of the individual. It is typical for several emails to be answered

in a single session, and at the highest level temporal behavior appears to be bursty and

nonrandom (Barabási, 2005).

Humans also process time at different scales. At higher scales, actions are dominated

by circadian rhythm and time is subjectively reconstructed (Buonomano, 2007). At lower

scales, there are thought to be several different mechanisms responsible for time interval
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(a) Wiener et al. (2011) (b) Praamstra et al. (2006)

Figure 1.2: Multiple mechanisms responsible for timing. (a) shows active areas of the brain
detected through neuroimaging, with the regions responsible for perceptual vs motor (left,
right) and subsecond vs suprasecond (up, down) tasks. (b) shows active areas of the brain
detected through EEG recordings during a time judgment task (left) and movement-related
task (right).

production and assessment. Sound localization requires temporal processing on the order

of microseconds, as it takes little more than 500 μs for sound to travel from the left to

the right ear (Carr, 1993). A distinction can be made between implicit and explicit timing

(Zelaznik et al., 2002). As an example of explicit timing, consider a sprinter anticipating

the start of a race. The estimation of when the starter’s gun will fire requires an explicit

representation of time. On the other hand, consider a distance runner aiming for a specific

lap time. The lap time is an implicit representation of time since it emerges as a result of

the runner’s speed and endurance. Several researchers have attempted to map the various

timing mechanisms in the brain, shown in Figure 1.22.

It is believed that movement initiation is explicitly timed, while the duration of move-

ment is implicitly timed (Zelaznik et al., 2002). Many actions contain a mix of implicit and

explicit time representations. In email correspondence, the longer time intervals from day

to day are likely the result of explicit timing, as a user may choose when to begin an email

correspondence session. The shorter time intervals within each email correspondence ses-

sion are implicitly timed, depending on a number of factors such as reading and typing

speed, message importance, and priority of other tasks.

2Figure 1.2a © 2011 Frontiers in Integrative Neuroscience. Figure 1.2b © 2006 Society for Neuroscience.
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1.2 Motivation

Time intervals have a number of desirable properties that make them attractive as a behav-

ioral biometric.

Timestamps are ubiquitous. Everyone is capable of producing a timestamped event

in some form. At the very least, a living heartbeat can be recorded and the resulting time in-

tervals used for identification (Israel et al., 2005). Most human computer interactions gen-

erate timestamped events, such as keystrokes, web surfing, SMS, and phone calls. Given

the number of electronic devices people interact with on a daily basis, timestamps can be

extracted from numerous sources.

Timestamps are persistent. It’s standard practice to record the timestamp of an event

and store that value in a database. A look at email, blog, and SMS database schemas will

reveal timecreated, timemodified, and timedeleted columns. This information typically

persists even after deleting or deactivating an account. Since timestamps are generally not

considered sensitive information, they are commonly publicly available or easy to obtain.

Timestamps are minimally intrusive. This is true for actions that occur in the upper

bands of Newell’s time scale, as many low-frequency actions can be measured remotely and

do not require the user to be present. Such examples are email and Bitcoin transactions,

which occur on the order of hours and days. On the contrary, actions that occur on the lower

end of Newell’s time scale, such as heartbeat or eye movement, typically require special

sensors or laboratory conditions to measure.

Timestamps can be collected without cooperation. Many spatial biometrics, such

as fingerprint and iris, require at least some degree of cooperation from the user. Time inter-

val biometrics utilizing actions in the upper bands of Newell’s time scale can be measured

remotely and without such cooperation. Many actions are publicly available by default,

such as Twitter postings and Bitcoin transactions. Others, such as keystrokes, can be de-

tected remotely through network traffic.
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Timestamps are resilient to encryption and masking. While spatial information

(e.g. IP address or GPS coordinates) can be masked, temporal information is more difficult

to hide. For example, a message can be securely transmitted by encrypting its contents,

however the time the message is sent is still visible to an eavesdropping third party. Mask-

ing temporal behavior requires introducing a lag between the user and the application, thus

is not practical for real-time applications. This issue is discussed in Chapter 7.

Timestamps can be incorporated into domain-specific models. Models that cap-

ture temporal behavior through event timestamps can be incorporated into domain-specific

models, such as those that capture motor behavior or other physiological processes. The

resulting spatiotemporal model may offer greater statistical power than spatial or temporal

models alone.

1.3 Problem statement

There are primarily three problems associated with time interval biometrics.

Identification Given a sequence of timed events, decide who they belong to (1 out of U).

Verification Given a sequence of timed events with claimed responsibility, decide whether

the claim is legitimate (binary classification).

Prediction Given a sequence of timed events, predict the time of a future event.

The first two problems are typical in biometrics literature, with applications such as access

control, customer tracking, and forensics, while the third problem is more generally related

to behavioral analysis. Event prediction plays an important role in resource allocation and

decision making. For example, predicting the time a cell phone user will place a call can

help network providers manage their resources effectively, and predicting the time of the

next attack from a terrorist group can help mitigate risk and aid in decision making.

1.4 Thesis

The thesis of this work is summarized as follows.
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Timestamped human events, generally characterized by periods of activity and

inactivity, can be used for the purpose of biometric identification, verification,

and prediction.

Exploratory and confirmatory analyses in Chapter 3 will show that human temporal behav-

ior is generally bursty and nonrandom. This motivates the development of a model that

captures temporal behavior with a dependency on event types. Empirical results in Chap-

ter 6 further support this thesis and demonstrate the proposed model is an improvement

over existing models. Given these findings, the problem of masking temporal behavior is

analyzed in Chapter 7.

1.5 Roadmap

In this work, publicly available and mostly real-world datasets are utilized. Behavioral data

collection is a tedious task, as experiments utilizing behavioral data are subject to a num-

ber of confounds that may invalidate experimental results. Confounds are often manifested

through data collection procedures. In dealing with human subjects, the criteria for select-

ing participants, instructions given to participants, and reward structure may influence the

outcome of an experiment (Read, 2005). Utilizing real-world data avoids some of these

issues since the data originates from a natural environment. It also allows for comparison

to previously published results.

Some data is only obtainable under real-world conditions. This is especially true for

low-frequency events, such as email correspondence and Bitcoin transactions, which would

require extensive longitudinal studies to analyze under laboratory conditions. Real-world

data is desirable for temporal behavior analysis since laboratory conditions can impose

an artificial upper bound on the time intervals. Such upper bounds are due to the timing

constraints of a data collection session or the length of the entire study.

This work starts by reviewing the related efforts in modeling temporal behavior. Several

datasets are then introduced and analyzed in an exploratory and confirmatory analysis. A

novel statistical model is introduced, as well as model evaluation criteria. Experimental re-

sults are obtained and some privacy issues are introduced, accompanied by some strategies

to mask temporal behavior. The major contributions of this work include the following.
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1. Unified empirical analysis of human time intervals that span Newell’s time scale.

2. Novel statistical model, the partially observable hidden Markov model, that utilizes

partially observable states revealed through event types.

3. Novel strategies to mask temporal behavior supported by theory and empirical re-

sults.

The work is organized as follows.

Chapter 2 reviews the works related to time interval biometrics, including modeling tech-

niques and privacy issues.

Chapter 3 analyzes behavioral data that span Newell’s time scale and motivates the devel-

opment of a new model.

Chapter 4 proposes the partially observable hidden Markov model for time intervals.

Chapter 5 defines the criteria under which the proposed model will be evaluated.

Chapter 6 presents experimental results on several datasets.

Chapter 7 discusses some privacy issues and possible mechanisms to circumvent time

interval biometrics.

Chapter 8 draws conclusions and discusses future work.

Appendix A describes the time delay embedding procedure and the determined embed-

ding parameters used in Chapter 3.

Appendix B describes the nonlinear prediction error used in some of the hypothesis tests

in Chapter 3.

Appendix C contains a list of abbreviations and symbols.
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Related work

The use of time intervals for biometric identification dates back to World War II, in which

a technique described as the “fist of the sender” was used to identify Morse code operators

based on the rhythm of the message (Dunstone and Yager, 2008; Vacca, 2007). Keystroke

dynamics later evolved, in which typing behavior is used for identification or verification.

Gaines et al. (1980) was one of the first works to utilize keystroke timings for authenti-

cation, following a technical disclosure from IBM (Spillane, 1975). During the 1980’s

and 1990’s, there was also much interest in transcription typing behavior (Salthouse, 1986;

Cooper, 1983), which coincides with the growing popularity of the personal computer.

Since 2000, numerous sources of temporal behavior have been explored and considered as

biometric modalities. This chapter reviews the efforts in modeling temporal behavior using

time intervals.

2.1 Modeling techniques

Point processes

A point process is a stochastic process whose realizations consist of point events in time or

space (Cox and Isham, 1980). Point processes are well studied, dating back to at least the

1950’s (Cox, 1955) with a theory of modeling established by David Cox (Cox and Isham,

1980). More recently, point process theory has been refined and extended in Daley and

12



CHAPTER 2. RELATED WORK 13

  

Observation window

Time

N 0(T ) N 1(T ) N 2(T ) N 3(T ) N 4(T ) N 5(T ) N 6(T ) N 7(T ) N 8(T ) N 9(T )
t 0

(a) Windowed observations and event intensity

  

Inter-event time

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7

E
ve

nt
 c

ou
nt

Time

t 0

(b) Time interval observations and event count

Figure 2.1: Point process modeling techniques (original figure).

Vere-Jones (2003, 2007) and Lowen and Teich (2005). A sequence of event timestamps is

a point process, and this univariate representation of temporal behavior allows one to take

advantage of techniques in modeling point processes.

There are primarily two ways of modeling a point process, shown in Figure 2.1. In

the first, the number of events that occur within a window of length T is observed, given

by N(T ). In this type of model, the event intensity is modeled as a function of time. An

alternative representation is through the time intervals between events, in which the time

interval τ is a function of the event count. While the windowed observations require the

discretization of time, the time intervals do not.

In practice, timed events are measured by a digital computer with a discrete clock and

technically fall under the first type of model, i.e. discretization occurs at a very low level.

Both the clock resolution and precision play a role in timing accuracy. Clock resolution is

the degree to which a measurement can be made and clock precision is the degree to which

a measurement can be repeated. Typically, the resolution of the system clock is fine enough



CHAPTER 2. RELATED WORK 14

to have little effect on measurements. For example, millisecond precision is not needed to

capture the correspondence behavior of an email sender, and second or minute resolution

will usually suffice. The clock precision is typically courser grained than the resolution.

Standard desktop computer clocks have a precision of approximately 16 ms, which has a

noticeable effect in modeling typing behavior (Killourhy and Maxion, 2008).

The model proposed in this work is of the form shown in Figure 2.1b, where time

intervals are modeled explicitly. This representation avoids the inevitable discretization of

time and information loss when two events occur in the same interval. It also has a more

compact representation, since long periods of inactivity can be summarized by a single

scalar instead of a sequence of observation windows with empty event counts.

2.1.1 Micro behavior

Micro behavior consists of the actions that occur in the biological band of Newell’s time

scale (Figure 1.1). These actions typically occur on a microsecond or millisecond scale and

are only indirectly controlled by an individual. Examples of micro behavior are heartbeat,

measured through electrocardiogram (ECG), and network traffic.

Electrocardiogram

ECG offers robust and secure biometric identification in medical applications. A living

heartbeat is difficult to reproduce or disguise, and ECG is frequently used for monitoring

a patient’s condition. ECG measures the change in electrical potential over time as the

heart muscle contracts due to the firing of an electrical signal beginning at the sinoatrial

(SA) node and traveling to the atrioventricular (AV) node, shown in Figure 2.2a1. There

are 5 fiducial markers commonly used in medical science to describe a single heartbeat,

including the P wave, QRS complex, and T wave, also shown in Figure 2.2a.

Kyoso and Uchiyama (2001) showed that the durations of and time intervals between

wave components can be used for biometric identification. The P wave duration, PQ inter-

val, QRS interval, and QT interval are thought to be unique to an individual and invariant

1Reprinted from Pattern Recognition, 38/1, Steven A. Israel, John M. Irvine, Andrew Cheng, Mark D.
Wiederhold, Brenda K. Wiederhold, ECG to identify individuals, 133-142, © 2004, with permission from
Elsevier.
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(a) ECG fiducial points (b) ECG time intervals

Figure 2.2: ECG fiducial points and time interval features (Israel et al., 2005).

to changes in heartbeat frequency, given by the R-R intervals. A series of experiments with

ECG data collected from 9 normal users in 2 separate sessions showed that the QRS and

QT intervals from a single heartbeat could be used to correctly identify users at over 94%

accuracy with a generalized Mahalanobis distance criterion in discriminant analysis.

Additional timing features between fiducial points were defined in Israel et al. (2005).

ECG was captured from 29 users at a high temporal resolution of 1000 Hz over 12 separate

sessions, each consisting of 7 two-minute tasks designed to evoke various levels of anxiety.

After 2-40 Hz bandpass filtering to isolate the heartbeat signal, the individual heartbeats

were normalized to unit length by the L’T’ distance, which corresponds to the total heart-

beat duration. The time intervals from each fiducial point to the R position were calculated,

shown in Figure 2.2b. After stepwise feature selection using Wilkes’ lambda, 12 features

were selected and classified using linear discriminant analysis. Users were identified with

81% accuracy using single heartbeats and 100% accuracy using 20 s blocks, invariant to

the ECG sensor placement locations. Under high anxiety conditions, 78% of individual

heartbeats and 97% of users were correctly classified. When training on a low anxiety task

and testing on a high anxiety task, heartbeat classification accuracy reduced to 66% and
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user classification accuracy remained at 98%. This demonstrated the time interval features

to be robust under various conditions.

Network traffic

The time intervals between packet arrivals over a network can be used for device identifica-

tion and verification. Network traffic is considered a micro behavior since the user typically

can only indirectly control the packet arrival time intervals, which occur at the millisecond

scale. The arriving packet time intervals are subject to a number of factors, such as device

system load, installed applications, and wireless environment conditions. The time inter-

vals can be used for device identification or device type identification, in which the device

make and model are of interest as opposed to the physical device itself.

Methods that use the time intervals between arriving packets for device identification

have several advantages. Most important is that these methods do not require payload

analysis and can be applied to encrypted network traffic (i.e. the packet contents are not

analyzed). Utilizing only the time intervals between packets is also computationally inex-

pensive compared to methods that require payload analysis and avoids relying on features

that are often uninformative, such as port number and host address information (Auld et al.,

2007).

In Uluagac et al. (2013) and Radhakrishnan et al. (2014) a method is developed that re-

lies only on packet arrival time intervals from wireless devices to identify a specific device

or device type. A feedforward neural network is trained for host identification using a fea-

ture vector of 300 time intervals as input. The technique can be applied passively, in which

network traffic is observed as a third party, or actively, by pinging the host and recording

the response times. With 37 devices on an isolated network, device identification accuracy

was 98% on average using a passive analysis. On an open network, identification accuracy

was 94% using a passive analysis and 97% using the active (ping response) technique.

The time intervals between beacon frames of a wireless access point can additionally

be used to detect unauthorized wireless access points (AP) through estimation of the clock

skew (Jana and Kasera, 2010). The clock skew is thought to be a unique characteristic of

an AP and can be determined with as few as 50-100 packets. This technique can be applied

to prevent MAC, BSSID, and SSID spoofing from rouge wireless access points.
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Figure 2.3: One-button design and press behavior of 4 users (Pohl et al., 2015).

2.1.2 Motor behavior

Motor behavior consists of the actions that occur in the cognitive band of Newell’s time

scale (Figure 1.1). These actions are typically driven by task goals and demonstrate a

learned skill or behavior. Most current behavioral biometrics fall into this category, such as

keystroke, mobile device behavior, and gait.

Button press

The behavior captured during a single button press can be sufficiently discriminative to

unique identify an individual. Pohl et al. (2015) performed a study to evaluate biometric

identification accuracy in non-engaging tasks during low-security scenarios, such as press-

ing a button to activate a coffee machine. A low-cost desktop button was designed, which

included an infrared distance sensor with a 4-30 cm operating range and a pressure sensor

with a 0.2-20 N range, both sampled at 400 Hz. The button design and normalized pressure

and distance measures for 4 users are shown in Figure 2.32.

2Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. UbiComp ’15, September 7–11, 2015, Osaka, Japan.
Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-3574-
4/15/09. . . $15.00. http://dx.doi.org/10.1145/2750858.2804270.
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Several novel timing features were extracted from the button presses. This included

the total interaction time and press and release phase durations. Using a random forest

classifier, the system was iteratively trained over 4 weeks in a production environment with

5 users. It was shown that after 3 weeks, the 5 users were correctly identified with 95%

accuracy with only one button press. Allowing two button presses increased accuracy to

99%.

While a single button press offers convenience and minimal security, repeated button

presses capture inter-press dynamics and offer more robust identification and verification.

Laskaris et al. (2009) is one of the first works to explicitly propose time intervals as a

behavioral biometric. A dynamical systems approach was used to verify the identity of

40 users who generated random time intervals by repeatedly pressing a single key on a

keyboard. Users were asked to press the key as irregularly as possible after being given a

definition of randomness and produced 10 different samples collected over 5 different days.

The samples each contained 128 key presses, or alternatively 127 time intervals. It has been

shown that humans are inherently bad at generating random numbers (Schulz et al., 2012),

and perhaps the inability to be random contributes to the effectiveness of rhythm generation

for biometric authentication.

Laskaris et al. (2009) employed Takens’ Theorem by reconstructing a multi-

dimensional system through time delay embedding of the time intervals. Parameters

for time delay embedding were determined by the net class separability in phase space.

The multivariate Wald-Wolfowitz (MWW) test (Friedman and Rafsky, 1979) was used

to measure distances between the samples in reconstructed phase space. The distances

were used to place the samples back in vector space by multidimensional scaling. With

the samples in feature vector space, the author used standard techniques for validation;

first a simple thresholding scheme followed by a minimum class variance support vector

machine (MCVSVM), a SVM variant aimed at minimizing in-class variance. Verification

performance was reported in terms of the equal error rate (EER), with error rates as low as

5.40%.

The MWW test statistic is more powerful in high dimensions than other multivariate

test statistics (Friedman and Rafsky, 1979). The MWW is a natural extension of the Wald-

Wolfowitz runs test, calculated as follows. Consider two samples of dimension de. The
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Figure 2.4: Multivariate Wald-Wolfowitz test. The runs are obtained by removing edges
connecting vertices from different samples in the MST (original figure).

observations in both samples are pooled together and the minimum spanning tree (MST)

is constructed over all observations in Rde . A run is a segment of the tree that traverses

vectors from only one sample. Runs are separated by edges that connect vertices (i.e. em-

bedded vectors) from different samples. In the case that both samples originated from the

same distribution, the branches of the tree will likely encounter vectors from each sample,

resulting in a large number of runs. If the observations originated from different distribu-

tions, then the branches will traverse the vectors of one sample and then the other sample,

resulting in relatively few runs.

An example of the MST and runs for a pair of bivariate samples is shown in Figure

2.4. Both samples were generated from the same distribution, resulting in a large number

of runs. The number of runs, R, is used in the MWW test statistic as follows,

W =
R− 2mn

N −1
(

2mn(2mn−N)
N2(N−1)

) 1
2

(2.1)
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where m and n are the number of vectors in each sample and N = m+ n. The expected

number of runs when the the samples follow the same distribution is given by

E [R] =
2mn
N

+1 . (2.2)

It has been shown that E [R] has a standard normal distribution (Friedman and Rafsky,

1979). Since the MWW test relies on the construction of the MST, the total cost of the

test is O(N3). In Monaco (2014), the MWW test statistic is approximated with a KD-tree,

reducing the computational cost to O(Nk log(Nk)) without loss of statistical power.

Keystroke

Keystroke dynamics refers to the way a person types on a keyboard. Typing behavior

is thought to be unique enough to allow for user identification and verification. Keystroke

dynamics can be used for both continuous and static verification. In continuous verification

applications, it is desirable to verify a user as soon as possible, such as in an intrusion

detection system. Since longer samples generally give a better estimate of a user’s typing

characteristics, there is a tradeoff between verification time and accuracy. Static verification

applications include test-taker verification and password hardening, in which keystroke

dynamics add an extra layer of security to username/password authentication.

Models of keystroke dynamics in the biometrics literature have predominantly been

discriminative, with little attention paid to the generative mechanisms underlying typing

behavior. Discriminative models are generally favored due to better asymptotic perfor-

mance and efficiency (Jordan, 2002). Despite this, generative models have a wide range of

applications and offer insight where discriminative models do not. Salthouse (1986) identi-

fied four major components that encapsulate transcription typing behavior, including input,

parsing, translation, and execution phases. A survey of keystroke biometric systems can be

found in Banerjee and Woodard (2012).

There are primarily three categories of keystroke biometric applications: short fixed-

text, long fixed-text, and free-text. Short-fixed text applications include short fixed text

entry that must be entered exactly, such as password or PIN entry. Incorrect sequences are
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Figure 2.5: Non-overlapping and overlapping keystroke time intervals (original figure).

typically discarded and typing behavior is used as an additional verification mechanism.

Long fixed-text requires a user to copy a passage, usually several sentences. Spelling and

grammatical errors are tolerated and sometimes used as additional features to measure the

user’s behavior. Long fixed-text applications are used by some online course providers

to verify the identify of online students (Maas et al., 2014). Free-text applications have

no restrictions on the input and typically deal with longer text, such as the response to an

essay-style question during an exam.

There are a number of time interval features that can be extracted from a sequence of

keystrokes, including duration (press time to release time of a key) and transition (time

interval between successive key presses or releases) features. Figure 2.5 shows the typical

features used in modern keystroke biometric systems for non-overlapping and overlapping

keystrokes. Duration and press-press transition times are always positive, while release-

press transition is negative for overlapping keystrokes. Some works, such as Brizan et al.

(2015), utilize trigram and higher n-gram features.

Tappert et al. (2009) performed a longitudinal study to evaluate several factors in

keystroke biometric identification and verification systems. Free-text and long fixed-text

samples were collected from 118 participants. Factors such as keyboard type, fixed vs

free-text, and template degradation over time were evaluated in simulated experiments. A

dichotomy model k-nearest neighbor (kNN) classifier was used, which transforms a multi-

class problem into a two-class problem by taking feature vector differences. There were

239 features consisting mostly of mean and standard deviations of timing features for vari-

ous key groups and a fallback hierarchy to account for missing observations. On a standard
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desktop keyboard, identification accuracies were as high as 99% for the long fixed-text in-

put 93% for free-text input. Training and testing on different types of input reduced the

identification accuracy to 70-80%. Template degradation had a noticeable effect on iden-

tification accuracy in a subset of the collected data, where accuracy dropped from 90% to

83% after 4 weeks and from 84% to 67% after 2 years.

Killourhy and Maxion (2009) evaluated the performance of several classifiers on short

fixed-text input. Using a database of 400 password samples from 51 participants, they

found the best EER to be 0.096% with a scaled Manhattan detector as described in Araujo

et al. (2005). In Killourhy (2012), the authors determined a 1% EER for 200 PIN entries

from each of 28 participants. In this case, 2 out of 3 repetitions of the PIN are consid-

ered, requiring that 2 match the user’s template. Using the same database as Killourhy

and Maxion (2009), they analyzed the effect of the system clock on keystroke biometric

authentication systems in Killourhy and Maxion (2008) and found a 4.2% increase when

using a standard low-resolution clock of 15 ms compared to a high resolution clock with an

accuracy of 200 μs. They hypothesized that other factors, such as bus contention, system

load, and networking delays, may have an effect on a user’s keystroke dynamics.

2.1.3 Social behavior

Social behavior consists of the actions that occur in the social band of Newell’s time scale

(Figure 1.1). These actions are driven by longer term goals and often depend less on phys-

iology than motor behavior. Some examples of social behavior that are of interest in bio-

metric applications are email correspondence, file sharing, and financial transactions.

Email correspondence

Malmgren et al. (2008) examined the heavy tails observed in email correspondence time

intervals and propose a nonhomogeneous Poisson process that accounts for circadian and

weekly periodicities. They analyzed a database of 394 email accounts that sent at least 41

emails over 83 days. In a Monte Carlo simulation, a best-fit truncated power law distribu-

tion was rejected for 344 users mostly due to the underestimation of intervals in the range
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Figure 2.6: Cascading stochastic process model. The time series of events (D) is modeled
by the activity rate (C), which is a combination of weekly (A) and daily (B) activity pat-
terns. In the cascading model (E), the activity rate increases when an email is sent after a
period of inactivity. The resulting events follow a nonhomogeneous Poisson process (F).
(Malmgren et al., 2008).

of 24 hours. The proposed model accounts for the nonhomogeneities due to circadian and

weekly rhythm.

The proposed model, show in Figure 2.63, was a cascading nonhomogeneous Poisson

process where the cascades represent periods of activity. The rationale of the model is as

follows. A user will generally respond to several emails in one sitting, and during that time

the individual is considered to be an active state. During the active state, email correspon-

dence follows a homogeneous process with random time intervals between sent emails.

The initiation of the active state is governed by a nonhomogeneous process with its inten-

sity described by a square-pulse distribution. Circadian and weekly patterns are captured

by the heightened activity of the square pulse on weekdays and during daylight hours. In

testing the goodness of fit, this model was rejected for only one user at the 0.05 signifi-

cance level through Monte Carlo hypothesis testing. This result established the model as a

possible explanation of email correspondence behavior.

3© 2008 The National Academy of Sciences of the USA.
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Figure 2.7: Double-chain hidden Markov model structure. The hidden state is given by zn,
and a first-order dependency exists between states and observations resulting in a double-
chain structure (original figure).

A drawback of the cascading model is the computational cost in estimating the model

parameters. This was performed through a simulated annealing procedure, which yielded

strong candidates in each fitting through a computationally expensive procedure. In Malm-

gren et al. (2009), the same authors proposed a double chain hidden Markov model

(DCHMM), which is similar in nature to Malmgren et al. (2008) and takes advantage of

efficient parameter estimation through the expectation maximization (EM) algorithm. Un-

like a typical first-order HMM, the DCHMM introduces a first-order dependency between

observations, as shown in Figure 2.7. The probably of sending an email at any given time

depends on the state of the individual and the time since the last email sent. Despite the

double chain, the maximum likelihood parameter estimates can still be efficiently obtained

(Berchtold, 1999).

File sharing

Gavaldà-Miralles et al. (2014) performed a study to determine whether copyright laws are

effective in limiting the sharing of copyrighted material. A large database of peer-to-peer

file sharing activity was analyzed. A two-state second-order hidden Markov model was

proposed, with daily download activity dependent on the download activity of one day

prior and seven days prior.
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(a) Autocorrelation of download activity. (b) Second-order hidden Markov model.

Figure 2.8: File sharing behavior follows circadian and weekly patterns, evident in the
autocorrelation of download activity. A second-order hidden Markov model captures this
behavior (Gavaldà-Miralles et al., 2014).

The mode structure was motivated by the autocorrelation of download activity, which

showed high correlation for a lag of one day and peak correlations at 7 day intervals, shown

in Figure 2.84. A goodness of fit test was performed visually, in which synthetic data ap-

peared very similar to real data. Several international regions were analyzed in an effort

to understand the effect of copyright laws on file sharers. It was determined that the im-

plementation of stricter copyright laws has only a short term effect on the behavior of file

sharers, suggesting other means of managing illegal file sharing are necessary.

4Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. CoNEXT’14, December 2–5, 2014, Sydney, Australia. Copyright
2014 ACM 978-1-4503-3279-8/14/12 ...$15.00. http://dx.doi.org/10.1145/2674005.2675009.
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ACC EER
Time interval 0.30 0.23
Hour of day 0.25 0.25
Time of hour 0.04 0.49
Time of day 0.21 0.28
Coin flow 0.50 0.13

Inputs and outputs 0.22 0.28

Table 2.1: Bitcoin user identification and verification results (Monaco, 2015).

Financial transactions

Modeling financial transaction behavior is of interest in several applications, such as fraud

detection and customer identification. An intrusion detection technique that uses only tim-

ing information has been proposed. In Scott (2001), a nonhomogeneous Poisson hidden

Markov model (NPHMM) is used to model spending behavior and detect anomalous ac-

tivity in a user’s account. A similar NPHMM is used in Lu and Zeng (2012) to predict

insurance claim counts based on weather patterns.

More recently, methods for identifying users in the Bitcoin network based on transac-

tion behavior were proposed in Monaco (2015). Similar to Monaco (2014) and Laskaris

et al. (2009), samples were time delay embedded and compared using an approximate

MWW in the reconstructed phase space. Most of the samples were shown to be nonran-

dom and some to be nonlinear through Monte Carlo hypothesis testing. Using a population

61 users with 6 months of activity each, a linear-weighted kNN classifier with the MWW

as a distance measure was able to correctly identify users with up to 75% accuracy. The

identification accuracy (ACC) and EER for each feature are shown in Table 2.1. The time

intervals alone allowed 30% of users to be correctly identified.

2.1.4 Group behavior

Group behavior consists of the actions performed by groups in the social band of Newell’s

time scale (Figure 1.1). While social behavior is driven by individual goals, group behavior

emerges from multiple agents acting cooperatively.
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Terrorist activity

Generative models of terrorist activity time intervals were proposed in several works. In

Clauset et al. (2007), the frequency of severe terrorist events was shown to be scale free

with roughly 13-year oscillations. The power law behavior was shown to be robust and

remained intact when controlling for such variables as country and weapon type. Later, the

same author showed the probability of a 9/11-sized event to be much greater than what is

commonly perceived (Clauset et al., 2013). Using historical data from 1968, the probability

of observing at least one 9/11-size event in the near future was estimated to be 11-35%. In

this range, the presence a 9/11 event is not an outlier. Global terrorist events also appear

to be clustered in time, demonstrated in Telesca and Lovallo (2006). While severe terrorist

events were shown to be memoryless, global terrorist events indicated bursts of activity and

time-clusterization. The Allan Factor was used to reveal the non-randomness of terrorist

events, while severe events appeared to follow a Poisson process.

A self-exciting model of terrorist activity was proposed in Porter et al. (2012). The

authors reasoned that the probability of a terrorist attack quickly increases and then decays

after a recent attack. The daily number of attacks that occurred in Indonesia over 13 years

were used to make successive predictions of the probability of a future attack. Using the

log-probability gain as a performance metric, the proposed model outperformed a baseline

model in making predictions. Figure 2.95 shows the best-fit self-exciting and baseline

models with the empirical data.

In Raghavan et al. (2013), a two-state hidden Markov model for terrorist group activity

is proposed. Model states correspond to the active and inactive periods of activity within the

group. They hypothesized that group dynamics can be better understood if the underlying

state is known. Using data from several terrorist groups, the model was iteratively trained

and then used to predict the time to the next event. The asymptotic prediction errors of the

two-state hidden Markov model were lower than a self-exciting hurdle model and baseline

predictions using the sample mean, justifying the authors’ hypothesis.

5© 2012 Institute of Mathematical Statistics.
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Figure 2.9: Self-exciting model of terrorist activity. The best-fit self-exciting (solid black)
and baseline (dotted red) are shown with the observed piecewise constant probabilities
(gray) (Porter et al., 2012).

2.2 Privacy

There is generally less privacy as one moves up in Newell’s time scale. Social and group

behavior are relatively easy to observe, while motor and micro behavior are personal and

harder to measure without a user’s consent. Since keystrokes are ubiquitous with modern

computers and often contain sensitive information, they are the subject of some privacy

issues.

Key-press times can be obtained remotely without installing a keylogger on the victim’s

computer by observing the network traffic generated from an interactive application, such

as SSH in interactive mode (Song et al., 2001) and Google Suggestions service (Tey et al.,

2013). A timing attack on SSH network traffic timestamps collected during password entry

can provide about 1 bit of information in cracking a password. Song et al. (2001) verified

that the key-press latencies can be reliably determined from the packet inter-arrival time of

interactive SSH traffic, as the time between the actual press of a key and the creation of

the packet by the kernel is negligible. In Tey et al. (2013), the key-press timestamps are
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masked by a client-side buffering mechanism, however they still allow for the estimation

of key-press latency statistics.

With access to the victim’s computer, a spoofing attack such as in Rahman et al. (2013)

can be utilized. Observing a victim’s keystrokes directly allows for typing behavior to be

easily replicated. Without any knowledge of the victim’s typing pattern, an attack such

as Serwadda and Phoha (2013) can be used. The latter work used a template enumeration

technique, in which an independent keystroke database was used to reduce the search space

of typing behavior. This works well for shorter strings and assumes that the verification

system allows multiple attempts.

Monaco et al. (2015) provides empirical evidence for a two-state generative model of

typing behavior in which the user can be in either a passive or active state. Given key-press

latencies with missing key names, the model is then used to spoof the key-press latencies of

a user by exploiting the scaling behavior between inter-key distance and key-press latency.

The proposed generative model uses this partial information to perform a key-press-only

sample-level attack on a victim’s keystroke dynamics template. Results show that some

users are more susceptible to this type of attack than others. For about 10% of users,

the spoofed samples obtain classifier output scores of at least 50% of those obtained by

authentic samples. With at least 50 observed keystrokes, the chance of success over a

zero-effort attack doubles on average.

2.3 Limitations

Most of the proposed models have not been directly applied to all three problems men-

tioned in Section 1.3. Additionally, model selection has primarily been driven by statistical

methods. Selection criteria for the problems described in Section 1.3 should be based on

the relevant performance measures, such as empirical identification and verification accura-

cies. Lastly, many works employ models of the first type in Figure 2.1, in which windowed

observations are made. This results in the discretization of time and seems less appropriate

for time interval modeling.
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Empirical patterns

This chapter describes the experimental datasets and some preliminary modeling results.

Behavioral time interval data is analyzed through exploratory and confirmatory techniques.

Model design is guided by the findings, and data attributes, such as clustering and time-

dependence, are determined.

3.1 Experimental data

Time intervals are ubiquitous and there are a number of publicly available time interval

datasets. These range from high-frequency events, such as keystrokes and eye movement,

to low-frequency events, such as cyber crime and visitation records. Table 3.1 summarizes

the datasets used in this work. These datasets were chosen because of their relevance to

biometric security applications and coverage of Newell’s time scale.

3.1.1 Keystrokes

Keystrokes are detected by a keylogger, a program that records the sequence of typed keys

along with the key-press and key-release timestamps. A keylogger can be installed on a

client machine and record events in a system-wide context, or it can deployed over the

web and record events in a sandbox environment. Event times are usually measured with

millisecond resolution and approximately 16 ms precision Killourhy and Maxion (2008).

30
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Dataset Source Events Users Time interval

Keystroke fixed-text Monaco et al. (2013) 24k 60 263 ms
Keystroke free-text Villani et al. (2006) 251k 56 310 ms
Mobile Jain et al. (2014) 11k 52 366 ms
Keypad Bakelman et al. (2013) 6.6k 30 376 ms
Bitcoin transactions Reid et al. (2013) 239k 61 134 mins
Linux kernel commits Passos et al. (2014) 16k 52 5.2 days
White House visits Hudson (2015) 2.7k 18 9.9 days
Terrorist events LaFree et al. (2007) 1.8k 10 125 days

Table 3.1: Publicly available time interval datasets. The number of events, users, and mean
time interval for each user are shown for the subsets of each dataset selected for this work.

Keystrokes are typically categorized by input type as follows.

Short fixed-text The text input is exactly known beforehand for short input and is gener-

ally within the range of 4-16 characters. This includes passwords, phone numbers,

and personal identification numbers (PIN).

Long fixed-text The text input is approximately known beforehand and usually consists

of several sentences. A common scenario is the keystroke verification mechanism

used by massively open online course (MOOC) providers in which the student must

copy several sentences (Maas et al., 2014). Spelling and grammar mistakes are often

ignored, and the actual input only approximately matches the expected input.

Long free-text The text input is unknown beforehand and consists of at least several sen-

tences. The keystrokes collected as part of an essay question in an online test would

be considered long free-text.

Further distinction is made by the input device, such as laptop, desktop, or mobile key-

board, as classification performance varies across devices (Tappert et al., 2009). The soft

keyboards on mobile devices are different from desktop and laptop keyboards in several

ways. On desktop and laptop computers, a key must be released after it is pressed, whereas

on a mobile device, a key can be pressed without being released. This happens when the

user’s finger slides out of the soft key boundary before it is released.
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Dataset Users Samples/User Keystrokes/Sample Time interval

Keystroke-fixed 60 4 100 263 ms
Keystroke-free 56 6 748±98 310 ms
Mobile 52 20 11 366 ms
Keypad 30 20 11 376 ms

Table 3.2: Keystroke data summary.

Four keystroke datasets are analyzed in this work, summarized in Table 3.2. They con-

sist of long free-text, long fixed-text and short fixed-text input collected on desktop and

laptop keyboards, as well as short fixed-text input collected on a mobile device. The long

free-text (keystroke-free) dataset contains input from users who answered essay-style ques-

tions as part of a class exercise (Villani et al., 2006). A subset of the original dataset was

randomly selected to obtain 56 users who answered 10 questions each. Of this dataset,

each sample contained 748± 98 keystrokes. The long fixed-text dataset (keystroke-fixed)

contains 60 users who each copied 4 different nursery rhymes or fables (Villani et al.,

2006). Each sample is truncated so that it contains exactly 100 keystrokes. The short

fixed-text dataset (keypad) contains keystrokes recorded using only the keypad on a desk-

top keyboard. This dataset contains 30 users who entered the phone number 9141937761

followed by the Enter key. Each user provided 20 correct entries, and each sample con-

tains 11 keystrokes (10 digits + Enter). Incorrect entries were discarded. The mobile short

fixed-text dataset (mobile) contains keystrokes recorded on a mobile device from 52 users

entering the same digit sequence, 9141937761, followed by the Enter key (Jain et al., 2014).

Data was recorded on 5 identical LG-D820 Nexus 5 devices which have 4.95 inch touch

screens and 1080x1920 pixel resolution.

Each keystroke is described by the key that was pressed, the press time, and the dura-

tion. The keystroke features are described in Table 3.3. The time of word, time of sentence,

and time of paragraph features can be extracted for the long text datasets, where the key

press times are normalized to the respective word, sentence, or paragraph interval.
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Feature Description

Time interval Time between events (millisecond resolution)
Duration Duration the key was held down
Time of word Normalized time of word
Time of sentence Normalized time of sentence
Time of paragraph Normalized time of paragraph

Table 3.3: Keystroke features.

3.1.2 Bitcoin transactions

Bitcoin1 was first proposed in 2008 and implemented in 2009 (Nakamoto, 2008). It was

originally designed to solve the double-spending problem and eliminate the central author-

ity responsible for verifying the legitimacy of online transactions, such as in traditional

credit and banking systems. What makes the Bitcoin network especially unique is that its

entire transaction history is publicly available giving one the opportunity to analyze eco-

nomic and spending behavior (Kondor et al., 2014). The network operates in a peer-to-peer

fashion, where clients collectively verify the legitimacy of each transaction.

A Bitcoin address is similar to a bank account number. Anyone can generate an unlim-

ited number of Bitcoin addresses; thus it is common for users to control multiple addresses.

A Bitcoin transaction is a many-to-many function, able to have multiple inputs and multi-

ple outputs. Transactions are specified by the input and output addresses, the bitcoin value

of each output address, and the time the transaction takes place. The cumulative bitcoin

value from the inputs must be distributed to the outputs. Therefore, it is common for a

sender to use an output address to receive change from a transaction. These addresses

are normally referred to as change addresses (Meiklejohn et al., 2013). The sender must

prove ownership of all input addresses for a transaction to be verified by the network. After

the transaction is verified, the bitcoins are distributed to the output addresses as specified.

Figure 3.1 shows two transactions with multiple outputs and multiple inputs, respectively.

A Bitcoin transaction is a behavioral event initiated on behalf of the sender. The sender

could be a single person, organization, or a business. Additionally, a transaction could

1The proper noun Bitcoin refers to the peer-to-peer network, while lowercase bitcoin refers to the individ-
ual unit of currency.
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Figure 3.1: Bitcoin transactions with multiple outputs and multiple inputs. The total value
of the inputs must be distributed to the outputs (original figure).

initiated by a computer program. The anonymity that can potentially be achieved using

Bitcoin is only a side effect of the ability to create an unlimited number of addresses that act

similarly to bank account numbers (Meiklejohn et al., 2013). It is recommended that users

create a new address for every transaction, although many fail to do so. Because of this,

multi-input transactions can be used to link addresses to the same owner since ownership of

each address must be proven through public key cryptography. This was shown in a work

where the user network was reconstructed from the publicly available transaction network

(Reid and Harrigan, 2013).

The dataset used in this work is a subset of the user network compiled by Ivan Brugere2,

using tools modified from Martin Harrigan (Reid and Harrigan, 2013). Blockchain 230686

includes Bitcoin transactions made up to April 7, 2013, a network of 6.3M vertices and

37.4M edges. From the raw dataset, only users with between 100 and 1000 unique outgoing

transactions per month, for at least separate 6 months (not necessarily consecutive), are

kept. This yields 61 users, and the most recent 6 month-long samples for each user are

kept, for a total of 366 samples. Restricting sample sizes to be within the same order of

magnitude avoids discrimination by transaction frequency alone.

The Bitcoin transaction features are summarized in Table 3.4. These features capture

both timing and network information of a each transaction. Transactions with 0 outputs and

a positive number of inputs have a strictly positive bitcoin value; this represents a payment

2http://compbio.cs.uic.edu/data/bitcoin/

http://compbio.cs.uic.edu/data/bitcoin/
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Feature Description

Time interval Time between events (second resolution)
Minute of hour Minutes elapsed since the start of the hour
Hour of day Hours elapsed since the start of the day
Day of week The day of week, where Monday = 1, . . . , Sunday = 7
B value Bitcoin value, positive for gain, negative for loss
Num. outputs Number of output edges to other users
Num. inputs Number of input edges from other users
Input/output balance Number of inputs minus the number of outputs

Table 3.4: Bitcoin transaction features.

to the user. Similarly, transactions with 0 inputs and at least one output have a negative

bitcoin value and represent a payment from the user. A transaction with 0 outputs and 0

inputs has a 0 bitcoin value, and represents a self-loop, i.e. a transaction between addresses

belonging to the same user. This may occur if a user chooses to consolidate bitcoin to a

single address or distribute bitcoin to multiple addresses.

3.1.3 Linux kernel commits

The commit history of the Linux kernel is analyzed (Passos and Czarnecki, 2014). This

dataset contains over 300k commits from approximately 13.5k authors over a 7 period.

The commits include patches, feature additions, and feature removals made to the Linux

kernel. Timestamps are provided with day resolution, and it is possible for an author to

make more than one edit per day. After an edit is made and submitted, it must be reviewed

and approved by a committer before being integrated into the repository.

A subset of the dataset is selected for this work. Yearly samples are formed and users

who made at least 160 commits for four years, with commits on at least 40 days per year,

are selected. The resulting subset contains 52 users, with 4 years of activity each, and an

average of 77 days of activity per year for each user. The event features are summarized in

Table 3.5.
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Name Description

Time interval Time between events (day resolution)
Day of week The day of week, where Monday = 1, . . . , Sunday = 7
Week of month The week of the month, from 1, . . . , 5
Time to commit Mean time between authorship repository integration
Num. commits Number of unique commits
Num. committers Number of unique committers that reviewed the edits
Description chars Number of words in the commit description
Description words Number of characters in the commit description

Table 3.5: Linux kernel commit features.

3.1.4 White House visits

Starting in 2009, the White House has made its visitor logs publicly available (Hudson,

2015). The dataset contains 4.67m visits from over 200k people. Many of these visits are

tour groups, in which case the tour guide is logged. Each event contains the time of arrival,

time of departure, the scheduled time of arrival, and time the appointment was scheduled.

It also contains the number of people accompanying the visitor, the check-in and check-out

locations, and the scheduled meeting room. All timestamps have minute resolution.

A subset of the original dataset is analyzed in this work. Users who made at least 8

separate visits for 4 years, with at least 20 visits per year are selected. Four yearly samples

are created for each user. The resulting dataset contains 18 users, with an average of 38

visits per year. The features of each visit are summarized in Table 3.6.

3.1.5 Terrorist activity

The Global Terrorism Database (GTD) is an open source database of worldwide terrorist

events that have occurred since 1970 (LaFree and Dugan, 2007). Each event is described

by over 100 variables, including the time of the event, suspected and confirmed participat-

ing groups, and claims of responsibility. According to GTD data collection methodology,

a terrorist event is an intentional act of violence committed by a sub-national group or in-

dividual. The event must have at least two of the following attributes for inclusion in the

GTD:
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Feature Description

Time interval Time between events (minute resolution)
Hour of day Hours elapsed since the start of the day
Day of week The day of week, where Monday = 1, . . . , Sunday = 7
Week of month The week of the month, from 1, . . . , 5
Duration Duration of the visit
Tardiness Time between the scheduled appointment and the actual time of

arrival. Negative for early arrivals.
Forecast Time between when the appointment was scheduled and the

scheduled time of the appointment.
Num. people Number of people accompanying the visitor

Table 3.6: White House visit features.

Feature Description

Time interval Time between events
Day of week The day of week, where Monday = 1, . . . , Sunday = 7
Week of month The week of the month, from 1, . . . , 5
Month of year Month of the year, where January = 1, . . . , December = 12
Num. perpetrators Number of perpetrators
Num. killed Number of people killed
Num. captured Number of perpetrators captured
Num. related events Number of related events

Table 3.7: Terrorist activity features.

• Political, economic, religious, or social motivations

• Intent to coerce or intimidate a large audience

• Actions that violate international humanitarian law

The database is overseen by a panel of 12 terrorism research experts and is generally con-

sidered of high quality (Sheehan, 2012). As of January, 2015, the GTD contains 129,017

events from January 1, 1970, to October 15, 2013. Table 3.7 summarizes the event features

used in this work. Additional attributes include the criteria, the attack type, whether the

attack was a success or not, the type of weapon used, and the target of the attack.
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Group Confirmed Suspected Claimed Competing
Al-Aqsa Martyrs Brigade (ALA) 161 6 14 5
al-Fatah (ALF) 51 8 2 0
Democratic Front for the
Liberation of Palestine (DFLP)

48 0 2 0

Hamas Islamic Resistance
Movement (HAM)

288 24 14 5

Hizballah (HIZ) 277 48 2 1
Palestine Liberation Organization
(PLO)

152 13 1 1

Palestinian Islamic Jihad (PIJ) 176 9 13 5
Palestinians (PAL) 1086 18 0 0
Popular Front for the Liberation
of Palestine (PFLP)

105 5 8 3

Popular Resistance Committees
(PRC)

52 0 2 1

Total unique events 2315 128 46 13
Grand total (region) 2485 (5509)

Table 3.8: Middle Eastern active terrorist groups. Number of confirmed, suspected,
claimed, and competing events from active terrorist groups in Israel, the West Bank and
Gaza Strip, and Lebanon.

In this work, only the events that have occurred in Israel, the West Bank and Gaza Strip,

and Lebanon are considered. This region was selected for several reasons. Besides being

an area of ongoing conflict, it contains a relatively high number of active terrorist groups

that operate solely within that region. The active groups and event counts are summarized

in Table 3.8.

The active groups in this region were determined according to the following criteria.

The group must have confirmed responsibility for at least 40 events in the region, where

they must also have committed at least half of all their confirmed events. This eliminates

active groups operating primarily outside the region. After applying these criteria, 10 active

groups are identified. This is a relatively dense area of active terrorist groups, as the region

consists of only 3 states. By contrast, an area such as Sub-Saharan Africa, which contains

46 states, has 11 groups that meet the criteria. The selected region also contains a relatively

high number of events with competing claims of responsibility.
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Figure 3.2: Terrorist group cooperation and competition networks (original figure).

An event in the GTD can have up to three different participating groups, and the partic-

ipation of each group can be either confirmed or suspected3. A group may claim responsi-

bility for an event even though they were not involved. This automatically makes the group

a suspect, however it does not confirm their involvement. In some cases, events have com-

peting claims of responsibility from suspected groups, and the claims of responsibility in

these events are mutually exclusive (i.e. one group claims sole responsibility for an event).

The network of groups with confirmed mutual responsibility for an event can be con-

structed. Likewise the network of competing claims to an event can be constructed. The

cooperation and competing-claims networks are shown in Figure 3.2. Many of the groups

that have confirmed mutual responsibility for an event also have competing claims of re-

sponsibility.

3Suspected participation is based on a dubious claim of responsibility or speculation of involvement
(LaFree and Dugan, 2014).
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3.2 Motivation for a two-state model

3.2.1 Heavy tails

A heavy-tailed distribution is one whose tail is not exponentially bounded (Asmussen,

2008). The time intervals between human actions are generally modeled by heavy-tailed

distributions (Vázquez et al., 2006). It has been shown that numerous human activities,

such as email correspondence, phone calls, and print job submissions, follow power law

distributions (Barabási, 2005). The power law distribution is given by probability density

function

P(τ)∼ τ
−α

τ > τmin,α > 1 (3.1)

where α is the scaling exponent. For α < 3, the standard deviation is undefined, and for

α < 2, the distribution has infinite mean. Such a distribution is often characterized as

being scale-free since all values are likely to be present. Evidence of scale-free behavior is

thought to be a sign of complexity (Newman, 2005).

It is common for observed time intervals to have some maximum value, due to either

a theoretical maximum or some constraint on the maximum time between events. A trun-

cated power law is one whose tail follows an exponential cutoff, with density function

P(τ)∼ τ
−αe−βτ

τ > τmin,α > 1,β > 0 (3.2)

where parameter β determines the exponential cutoff.

Accurately fitting a power law distribution is generally difficult (Clauset et al., 2009).

To further complicate the matter, it is common for power law behavior to only occur in the

tail of an empirical distribution, i.e. for values τ > τmin. Using the methods developed in

Clauset et al. (2009), the best-fit scaling parameter α , truncation parameter β , and mini-

mum τmin are determined for each user in each dataset. Figure 3.3 shows the distributions

of scaling exponents for the users in each dataset.

A loglikelihood ratio test is performed for each fit, comparing the truncated power law

to the alternative exponential distribution. Note that by definition, since a distribution is

heavy-tailed if its tail is not bounded by the exponential, the exponential is the minimum
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Figure 3.3: Distribution of scaling exponents for each dataset. The best-fit truncated power
law is determined (original figure).

possible alternative to test against (Asmussen, 2008). Table 3.9 shows the proportion of

users for which the exponential or power law distribution is preferred in the loglikelihood

ratio test, and (in parentheses) the proportion of users for which that preference is signif-

icant at the 0.05 level. p-values are determined using standard techniques in comparing

simple-vs-simple hypotheses (Vuong, 1989).

Despite showing evidence of heavy tails, the power law would be a poor choice of

model for the purpose of identification and verification. The reason for this is that only the

Dataset Power law Exponential

Keystroke (free) 1.00 (0.63) 0.00 (0.00)
Keystroke (fixed) 1.00 (0.88) 0.00 (0.00)
Bitcoin 0.98 (0.44) 0.02 (0.00)
Kernel commits 1.00 (0.40) 0.00 (0.00)
White House visits 1.00 (0.11) 0.00 (0.00)
Terrorist activity 1.00 (0.50) 0.00 (0.00)

Table 3.9: Power law vs exponential loglikelihood ratio test results showing the proportion
of users better modeled by each distribution and (in parenthesis) the proportion of users for
which that preference is significant at the 0.05 level.
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Figure 3.4: Best-fit power law (dashed red) vs log-normal (dotted blue) time interval dis-
tribution examples for a randomly selected user (solid blue) from each dataset (original
figure).

tail of the distribution follows a power law. The power law does not specify how the values

below τmin are distributed, which represents a major portion of the empirical time interval

distribution for many users. The log-normal is often an adequate alternative to the trun-

cated power law. Both distributions exhibit heavy tails and can become indistinguishable

from each other (Perline, 2005). Whether one model is more appropriate than the other

is somewhat a matter of debate. In Stouffer et al. (2005) and Barabási et al. (2005) it is

disputed that the log-normal distribution provides a better fit for time intervals of email

correspondence. Log-normal distributions are usually the result of a multiplicative pro-

cess (Mitzenmacher, 2004), and power law distributions may arise from nonhomogeneous

Poisson processes (Hidalgo and César, 2006).

As a demonstration, Figure 3.4 shows the best-fit truncated power law and log-normal

distributions for a randomly selected user from each dataset. The log-normal provides an

adequate fit, while the truncated power law is unable to capture the complete empirical

distribution. A loglikelihood ratio test confirms this finding, with results shown in Table

3.10. The log-normal is usually preferred over the truncated power law when τmin is set to

the minimum value in the distribution, i.e. all of the data is used in determining distribution
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Dataset Power law Log-normal

Keystroke (free) 0.00 (0.00) 1.00 (1.00)
Keystroke (fixed) 0.00 (0.00) 1.00 (1.00)
Bitcoin 0.00 (0.00) 1.00 (1.00)
Kernel commits 0.75 (0.56) 0.25 (0.08)
White House visits 0.00 (0.00) 1.00 (1.00)
Terrorist activity 0.70 (0.20) 0.30 (0.00)

Table 3.10: Power law vs log-normal loglikelihood ratio test results showing the proportion
of users better modeled by each distribution and (in parenthesis) the proportion of users for
which that preference is significant at the 0.05 level.

parameters. The only exceptions to this are kernel commits and terrorist activity, where

about half the users significantly prefer the truncated power law at the 0.05 level.

3.2.2 Temporal clustering

Temporal clustering of a point process can be evaluated in several ways. The coefficient of

variation (CV) measures the relative variation of time intervals, given by

Cv =
στ

〈τ〉 (3.3)

where στ is the time interval standard deviation and 〈τ〉 is the expected time interval. A

Poisson process has Cv = 1, and temporal clustering occurs when there is a deviation from a

random process such that Cv > 1. The CV is determined for each user in each dataset. The

mean CV of each dataset is shown in Table 3.11. The free-text keystroke dataset shows

higher CV than fixed-text due to the presence of longer time intervals that occur during

free-text production.

While the CV indicates the presence of temporal clustering, it is not clear at what

timescales the clustering occurs. The Allan Factor (AF) can be used to determine the time

scale at which clustering occurs (Barnes and Allan, 1966). The AF is given by

AF(T ) =
E [Nk+1 (T )−Nk (T )]

2

2E [Nk (T )]
(3.4)
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Dataset Cv

Keystroke (fixed) 1.34
Keystroke (free) 3.98
Bitcoin 1.65
Kernel commits 3.26
White House visits 1.70
Terrorist activity 2.83

Table 3.11: Mean coefficients of variation.
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Figure 3.5: Allan Factor of a randomly selected user from each dataset (original figure).

where Nk (T ) is the number of events that occur in the kth window of length T . The AF can

be interpreted as the frequency-deviation of a process with sample period T , where higher

values indicate frequency instability. Constant AF for any T indicates a memoryless, or

random, process. If the events are clustered in time, then the AF will vary as a power law

by

AF(T ) = 1+
(

T
T1

)α

where T1 marks the onset of scaling behavior and limT→0 AF(T ) = 1. The AF of a ran-

domly selected user from each dataset is shown in Figure 3.5. Linear trends in the tail of

each AF series on the log-log plot indicate power law scaling.
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3.2.3 Exogenous variables

It is not clear whether the temporal clustering in each dataset is due to user behavior or

to exogenous variables. For example, clustering in White House visits can be the result

of periods of globally high and low visitation frequency. There could be a political event

taking place, in which the number of visitors would be expected to increase, or a visitor

ban, in which case the number of visitors would decrease. Visitation frequency is also

subject to weekly, monthly, and seasonal rhythms.

A relative clock can be used to eliminate the effect of exogenous variables and deter-

mine whether temporal clustering is due to user behavior or external factors. Whereas an

absolute clock advances according to the normal concept of time, a relative clock is ad-

vanced based on the global state of the system (Zhou et al., 2012). Consider two events

that occur at time tn−1 and tn. The absolute time between these events is τn = tn− tn−1.

The relative time between the (n−1)th and nth events is the number of events that occur

globally between times tn−1 and tn. The relative clock eliminates exogenous variables by

advancing time by the global event count. In periods of global silence (including missing

data), time will not advance, and in periods of globally high frequency, time intervals will

be proportionally to the global system state.

As motivation for using a relative clock, consider the terrorist activity dataset. Rug

plots of the events from each group are shown in Figure 3.6. The GTD underwent several

structural changes, resulting in data loss during the 1990s. This can be seen by the gap in

events after day 8000 (circa 1993). This gap translates to a period of inactivity for each

model using an absolute clock, whereas time advances by 0 events during this period using

a relative clock.

The mean CV for each dataset is calculated using a relative clock, with results shown

in Table 3.12. Similarly, the AF can be calculated using a relative clock. The relative

clock AF values are shown in Figure 3.7 for the same users as in Figure 3.5. Power law

scaling, given by linear trends in the AF tail, is more apparent using a relative clock. For

the keystroke datasets, each sample is normalized to t0 = 0 before calculating the relative

clock times.
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Figure 3.6: Terrorist activity group and global events (original figure).

Dataset Cv

Keystroke (fixed) 1.31
Keystroke (free) 4.03
Bitcoin 1.64
Kernel commits 3.19
White House visits 1.62
Terrorist activity 1.94

Table 3.12: Mean coefficients of variation using a relative clock.
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Figure 3.7: Allan Factor using a relative clock of a randomly selected user from each
dataset (original figure).

3.3 Time dependence

Time intervals fail to capture one important aspect of timed events, which is the distri-

bution of events within a time window. The events of a random process are expected to

be uniformly distributed within a time window T of any length. Specifically, the cumu-

lative distribution function of a random process is F (t) = t mod T
T for event time t where

0 < t < T .

Divergence from a uniform distribution indicates a dependence on time. This can be

due to circadian, weekly, or seasonal rhythms, where the event probability depends on the

time of day, day of the week, or month of the year. As an example, consider the activity of

two groups from the terrorist activity dataset. The distributions of events within the week,

month, and year are shown in Figure 3.8. The PIJ group shows a tendency of increased

activity towards the end of the week with the exception of Saturday (day 6), while the PLO

group has decreased activity with the exception of Sunday (day 7). The PLO group is also

noticeably more active in the first several months of the year.



CHAPTER 3. EMPIRICAL PATTERNS 48

1 2 3 4 5 6 7
Day of week

0

5

10

15

20

25

30

1 2 3 4 5
Week of month

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12
Month of year

0

5

10

15

20

25

F
re

qu
en

cy

(a) PIJ event frequency

1 2 3 4 5 6 7
Day of week

0

5

10

15

20

1 2 3 4 5
Week of month

0

5

10

15

20

25

30

2 4 6 8 10 12
Month of year

0

5

10

15

20

25

F
re

qu
en

cy

(b) PLO event frequency

Figure 3.8: Terrorist activity event distributions (original figure).
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3.3.1 Testing for uniformity

A test for uniformity is used to determine whether a user significantly deviates from having

uniformly-distributed events within a given interval. The chi-squared (χ2) test indicates

whether observed categorical frequencies differ from the expected frequencies. The test

statistic is given by

χ
2 = ∑

(O−E)2

E
(3.5)

where O and E are the observed and expected frequencies, respectfully, in each category.

The test statistic is compared to a chi-squared distribution with df degrees of freedom,

where df is 1 less than the number of categories in the test.

The categories are determined by splitting the time window into equal-sized bins. The

observed frequencies are the number of events in each bin, and the expected frequency of

each category is the mean observed frequency. For example, in testing whether events are

uniformly distribution within each day, the time of day is considered. The day is broken up

into 12 bins, from 00:00-02:00, 02:00-04:00, and so on. The event frequency in each bin

gives the observed frequencies. The test statistic is compared to a chi-squared distribution

with 11 df since there are 12 bins .

The chi-squared test for uniformity is performed for each user in each dataset. The

proportions of users that reject the null hypothesis are shown in Table 3.13. Only tests

for the relevant intervals for each dataset are performed (i.e. it doesn’t make sense to test

whether keystrokes are uniformly distribution over each day since the samples only span

several hours. This test would also almost surely be rejected, as keystrokes are subject to

circadian rhythm).

The day, week, month, and year time windows are natural choices for low-frequency

events, such as those that occur in the rational and social bands of Newell’s time scale. For

higher frequency events, the event distributions may follow different patterns. Consider the

distribution of keystrokes within each word, where words are separated by the Space key.

If a user has a tendency to type the beginning of a word quickly, the distribution will be

left-skewed, whereas if a user types the end of a word quickly, the distribution will be right
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Dataset Minute Hour Day Week Month Year

Keystroke (fixed) 0.98 1.00 - - - -
Keystroke (free) 0.82 1.00 - - - -
Bitcoin 0.03 0.43 0.87 0.85 1.00 -
Kernel commits - - - 0.87 0.87 0.46
White House visits - - - 1.00 0.22 0.39
Terrorist activity - - - 0.00 0.40 0.50

Table 3.13: Proportion of users rejected (0.05 significance) in a chi-squared test for unifor-
mity within the given interval. Minute, hour, and day interval tests are broken up into 12
bins and have 11 df, the week interval test has 6 df, the month interval test has 3 df, and the
year interval test has 11 df.

skewed. This is due to a higher concentration of events (keystrokes) in the beginning and

end of the time window it takes to type the entire word, respectively.

The normalized time of word is given by

t− tw
ts− tw

where t is the event time (of each key press), tw is the time of the first key of the word, and

ts is the time of the space key following the word. The normalized time of sentence and

time of paragraph are determined similarly, using the Period and Enter keys as delimiters,

respectfully.

The time of word distributions for two randomly selected users from the free-text

keystroke dataset are shown in Figure 3.9. Time of sentence distributions for the same

users are shown in Figure 3.10. User A has a slightly higher concentration of events in the

second half of each word, an indication that typing speed generally increases towards the

end of the word, whereas the mass for User B is roughly the same in the first and second

half of each word. Both users have a greater mass at the beginning and end of each word,

an indication that typing speed decreases in the middle of words. The time of sentence dis-

tributions of both users has a greater mass in the second half of each sentence, an indication

that typing speed increases towards the end of each sentence.

The chi-squared test for uniformity is performed for each user in the keystroke datasets,

using time of word, time of sentence, and time of paragraph. The results are shown in Table
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Figure 3.9: Time of word distributions for randomly selected users (original figure).
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Figure 3.10: Time of sentence distributions for randomly selected users (original figure).
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Dataset Time of word Time of sentence Time of paragraph

Keystroke (fixed) 0.95 0.20 0.28
Keystroke (free) 1.00 0.80 0.89

Table 3.14: Proportion of users rejected (0.05 significance) in a chi-squared test for unifor-
mity within the given interval. 11 degrees of freedom.

3.14. Overall, the event distributions for free-text input tend to be less uniform, with more

users rejecting the null hypothesis of uniformity within each time window.

3.4 Surrogate data testing

The method of surrogate data can be used to determine whether a time series is nonrandom

and/or nonlinear (Theiler et al., 1992). A discriminative test statistic is first calculated for

the observed time series. The statistic is then calculated for a number of surrogate time

series that exhibit behavior consistent with a null hypothesis (e.g. the data is random). The

observed statistic is then compared to the surrogate test statistics to determine whether the

null hypothesis should be rejected. The tests serve as a statistical proof by contradiction

and give evidence for the alternate hypothesis in the case of rejection.

The root mean squared (RMS) nonlinear prediction error (NPE) is used as a test statis-

tic. Computing the NPE requires phase space reconstruction of the observed time series.

Embedding parameters are determined using standard techniques as described in Appendix

A. Mutual information is used to determine the time lag and the method of false nearest

neighbors (FNN) is used to determine the embedding dimension. The NPE is computed

from the embedded vectors as described in Appendix B.

The p-value is determined by a rank statistic (Theiler et al., 1992). A biased p-value

is used since a large number of tests are being performed, and there is a possibility of

increased type I error using an unbiased estimator (Phipson and Smyth, 2010). Let q0 be

the statistic obtained from the original time series, and q be the values of the test statistic

obtained from S surrogates. The biased p-value of a lower-tailed test is given by

I (q0 > q)+1
S+1
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where I is the indicator function and I (q0 < q) is the number of surrogates for which q is

greater than q0 (upper-tailed and two-sided tests are calculated similarly). In all tests, H0 is

rejected at the 0.05 significance level and 100 surrogates are generated for each test. A test

is performed for each feature of each sample.

3.4.1 Testing for randomness

Consider the null hypothesis that an observed time series shows no temporal correlation

(i.e. the time series can be completely described by an independent and identically dis-

tributed random variable). The results of this test indicate whether the data has any struc-

ture or appears to be uncorrelated noise. Surrogates are generated by random permutations

of the original time series. This preserves the empirical distribution of the time series while

destroying any temporal correlation, which is consistent with the null hypothesis. Lower-

tailed tests are performed since the NPE is expected to increase for random time series.

The proportion of samples for which the null hypothesis is rejected for each feature

is shown in Table 3.15. The “time of” features (hour of day, day of week, etc) follow

sawtooth patterns and are largely rejected since they increase monotonically within the

respective interval. The null hypothesis is rejected in 10% to 35% of time interval samples.

3.4.2 Testing for linearity

Consider the null hypothesis that the data came from a linear stochastic process (i.e. the

data is completely described by its power spectrum). Surrogate samples are generated

using the method of Amplitude Adjusted Truncated Fourier Transform (AATFT) (Guarin

et al., 2010). This preserves both the power spectrum and amplitude distribution of the orig-

inal time series, an improvement over the Amplitude Adjusted Fourier Transform (AAFT)

(Theiler et al., 1992). A cutoff frequency of 0 Hz is used, and all tests are two-sided since it

is not obvious whether the surrogate NPE would be strictly less than or greater than that of

the original time series. The proportion of samples for which the null hypothesis is rejected

for each feature is shown in Table 3.16. A modest proportion of time interval samples in

each dataset show evidence of nonlinearity.
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Feature Rejected Feature Rejected

K
fi Time interval 0.12

K
fr Time interval 0.21

Duration 0.23 Duration 0.41

B
itc

oi
n

Time interval 0.26

C
om

m
its

Time interval 0.10
Minute of hour 0.34 Day of week 0.22
Hour of day 0.96 Week of month 0.55
Day of week 1.00 Time to commit 0.22
B value 0.27 Num. commits 0.08
Num. outputs 0.20 Num. committers 0.23
Num. inputs 0.36 Num. characters 0.07
Input/output balance 0.26 Num. words 0.06

V
is

its

Time interval 0.15

Te
rr

or

Time interval 0.35
Hour of day 0.08 Day of week 0.18
Day of week 0.15 Week of month 0.24
Week of month 0.26 Month of year 0.71
Duration 0.03 Num. perpetrators 0.00
Tardiness 0.05 Num. killed 0.18
Forecast 0.10 Num. captured 0.71
Num. people 0.21 Num. related events 0.59

Table 3.15: Proportion of samples for each feature of each dataset that reject the null hy-
pothesis of being random. Surrogates are generated by shuffling the values in the original
time series, one-sided p-values are determined by the NPE rank-statistic, and rejection is at
the 0.05 level. Kfi=keystroke-fixed, Kfr=keystroke-free.
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Feature Rejected Feature Rejected

K
fi Time interval 0.10

K
fr Time interval 0.09

Duration 0.12 Duration 0.25

B
itc

oi
n

Time interval 0.07

C
om

m
its

Time interval 0.05
Minute of hour 0.27 Day of week 0.15
Hour of day 0.82 Week of month 0.20
Day of week 0.86 Time to commit 0.08
B value 0.11 Num. commits 0.06
Num. outputs 0.05 Num. committers 0.19
Num. inputs 0.26 Num. characters 0.03
Input/output balance 0.06 Num. words 0.04

V
is

its

Time interval 0.08

Te
rr

or

Time interval 0.12
Hour of day 0.05 Day of week 0.18
Day of week 0.08 Week of month 0.12
Week of month 0.00 Month of year 0.12
Duration 0.05 Num. perpetrators 0.00
Tardiness 0.08 Num. killed 0.18
Forecast 0.03 Num. captured 0.65
Num. people 0.08 Num. related events 0.47

Table 3.16: Proportion of samples for each feature of each dataset that reject the null hy-
pothesis of being generated by a linear stochastic process. Surrogates are generated us-
ing the AATFT algorithm with a cutoff frequency of 0 Hz, two-sided p-values are deter-
mined by the NPE rank-statistic, and rejection is at the 0.05 level. Kfi=keystroke-fixed,
Kfr=keystroke-free.
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Figure 3.11: Nonlinear prediction error matrices for a randomly selected user from each
dataset. In-sample predictions lie along the diagonals, and out-of-sample prediction are
everywhere else. Nonstationarity is demonstrated by a change in NPE when moving away
from the main diagonal (original figure).

3.5 Stationarity

The NPE can also be used to evaluate time series stationarity. Out-of-sample predictions

can be made by using different samples for training and testing, as described in Appendix

B. If the user’s behavior is stationary, the prediction error should remain relatively constant

throughout time. If the prediction error increases or decreases with time between samples,

then the user’s behavior shows signs of being nonstationarity (Kantz and Schreiber, 2004).

Figure 3.11 shows the time interval NPE matrix for a randomly selected user from

each dataset. The PE is calculated for every combination of sample pairs within each user.

In-sample prediction errors lie along the diagonal and out-of-sample prediction errors are

everywhere else. The color scale is normalized to +/- 4 standard deviations of the NPE.

The keystroke, Bitcoin, kernel commit, and terrorist activity users all show one sample that

differs from typical behavior, as seen by the darker column. The White House visits show
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a change in behavior from the first pair of samples to the second pair, as each row gets

progressively darker.

3.6 Summary

The time intervals analyzed in this chapter show evidence of being nonrandom and heavy-

tailed. Based on the findings, model development should make two considerations.

Underlying system state. Time intervals from human actions are typically bursty,

with many short intervals separated by few long ones. Event times are also generally not

uniformly distributed in time. In the simplest realization, a user can be in one of two states

corresponding to active and passive states, and the resulting time intervals are dependent

on the underlying system state.

The type of event performed. There is typically more than one type of event that can

be performed in each dataset. For example, different keys can be pressed on a keyboard,

and Bitcoin transactions can be outgoing or incoming. The effort and control over each

type of event varies and influences the time to execute the event. Therefore, the resulting

time intervals should be dependent on the type of event performed.



Chapter 4

Partially observable hidden Markov
model

Often in time interval data, there is some incomplete information about the underlying

system state. This usually comes in the form of the type of event that took place, such

as which key was pressed on a keyboard. In a two-state model, the probability of being

in either an active or passive state may be greater depending on which key was pressed.

Certain keys, such as punctuation and the Space key, indicate a greater probability of being

in a passive state as the typist often pauses between words and sentences as opposed to

between letters in a word (Salthouse, 1986). This reasoning extends to other activities,

such as email, where a user might be more likely to pause after sending an email instead

of receiving an email, and programming, where a user may fix bugs quicker than making

feature additions.

In this chapter, the partially observable hidden Markov model (POHMM) is introduced.

The POHMM is a generalization of the hidden Markov model (HMM) in which the under-

lying system state is partially observable through event metadata at each time step. Whereas

in a HMM, the hidden state (h-state) is inferred through the observed values, the hidden

state in a POHMM is inferred through both the observed values and a partially observed

state (p-state). This chapter is organized as follows. The HMM for human time intervals is

first introduced in Section 4.1. The partially observable state is introduced in Section 4.2,

followed by the derivation of likelihood, hidden state sequence, and parameter estimation

58
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algorithms for the POHMM in Sections 4.3, 4.4, 4.5, respectively. Prediction is performed

using the POHMM in Section 4.6. An example of parameter estimation for the POHMM

is carried out in Section 4.7, followed by a demonstration of its consistency in Section 4.8.

Finally, the POHMM is compared to similar generalizations of the HMM and concluding

remarks are made in Section 4.9.

4.1 Hidden Markov model

The HMM was developed over several decades, dating back to 1960 when the forward-

backward procedure was first introduced (Stratonovich, 1960). The theory was later made

accessible to non-statisticians in the well-cited tutorial work, Rabiner (1989). The HMM

soon became popular for modeling behavioral data, such as speech, handwriting, ges-

ture, and linguistics. More recently, it has been used to model temporal behavior, such

as keystroke dynamics and terrorist activity (Rodrigues et al., 2005; Raghavan et al., 2013).

A HMM is a finite-state model in which observed values at time t depend on an under-

lying hidden state. The hidden state may or may not correspond to some physical state of

the system, depending on the application of interest. In speech, the hidden states generally

have no physical correspondence, whereas the hidden states in a model of temporal behav-

ior might correspond to the activity levels of the system (Lu and Zeng, 2012; Raghavan

et al., 2013).

The system advances in discrete steps, typically with a first-order dependency between

the hidden states. At the nth time step tn, a feature vector xn is observed and the system

can be in any one of M hidden states. Let xN
1 be the complete observation sequence from

times 0 to T , where N is the total number of observations. The HMM is unsupervised

since ground truth about the hidden state is generally not available. The latent variable zn

is introduced to represent the hidden state at time tn. The structure of the HMM is shown

in Figure 4.1.

The model starts in state j at time 0 with probability π j and transitions from state i

to state j with probability ai j. The transition matrix is denoted by A = [ai j] and starting

probability vector by π = [π j]. The steady state probability of being in state j is given by

Π j, where
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z1 z2 zT−1 zT

0 1 2 T−1 T

Hidden state

Observation x1 x2 xT −1 xT

t

Figure 4.1: Hidden Markov model structure (original figure).

Π j = ∑
1≤i≤M

Πiai j . (4.1)

The steady state vector Π can be determined by taking any row from repeated powers of

the transition matrix,

lim
N→∞

A

as the values in column j converge to the stationary probability for state j.

While in state j at time tn, the system emits an observation vector xn distributed accord-

ing to some density function f (·;b j) parametrized by vector b j. The emission distribution

can be either continuous, discrete, or a mix of both. The HMM is completely described by

the number of states M, starting probabilities π , transition matrix A, and emission distribu-

tion parameters b. The model parameters are given by θ = {π,A,b}.
There are generally three problems associated with the HMM (Rabiner, 1989), and a

fourth problem is introduced here.

1. Determine P(xN
1 |θ), the likelihood of an observation sequence, given model param-

eters θ .

2. Determine zN
1 , the maximum likelihood sequence of hidden states, given model pa-

rameters θ and an observation sequence.
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3. Determine argmaxθ∈Θ P(xN
1 |θ), the maximum likelihood parameters θ , given an ob-

servation sequence.

4. Determine E[xN+1|xN
1 ,θ ], the expected value of the next observation vector, given an

observation sequence and model parameters θ .

The first and third problems are necessary for identifying and verifying users, while the

second problem is useful in understanding user behavior. The fourth problem, although

generally not considered in biometrics, has important applications in behavioral analyses

such as resource optimization. The rest of this section deals with the solutions to each of

these problems.

4.1.1 Model likelihood

Calculating P(xN
1 |θ), the likelihood of an observation sequence xN

1 for a given model, is

necessary for user identification and verification. Let the forward variable α j(n) be the

probability of the partial observation sequence xn
1 and state j at time tn, given model pa-

rameters θ . This can be computed inductively by Algorithm 4.1.

Algorithm 4.1 HMM forward algorithm.

1. Initialization: α j(1) = f (x1;b j)π j

2. Induction: α j(n+1) =
(
∑

M
i=1 αi(n)ai j

)
f (xn+1;b j)

3. Termination: P(xN
1 |θ) = ∑

M
j=1 α j(N)

There are several ways of handling the underflow errors that will eventually occur as

N increases in Algorithm 4.1 due to the floating point values becoming infinitesimally

small. Intermediary values may be scaled or calculated in log-space. For long observation

sequences, typically the loglikelihood is used. The order of computations required for the

forward algorithm is O(M2N), since it requires M2 calculations for each observation vector.
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4.1.2 Hidden states

It is generally not necessary to know the sequence of hidden states to perform user identifi-

cation and verification, although this function is useful in other applications. This requires

estimating zN
1 , the most likely sequence of hidden states, given the observation sequence xN

1

and parameters θ . This is accomplished by the Viterbi algorithm, a dynamic programming

algorithm that determines the most likely hidden state at each time step tn.

Similar to the forward variable in the previous section, the backward variable β is

introduced here where β j (n) is the probability of the partial observation sequence xN
n+1 and

state j at time tn, given the model parameters θ . Like the forward algorithm, the backward

algorithm is O(M2N), shown in 4.2.

Algorithm 4.2 HMM backward algorithm.

1. Initialization: β j(N) = 1

2. Induction: βi(n) = ∑
M
j=1 ai j f (xn+1;b j)β j(n+1)

3. Termination: P(xN
1 |θ) = ∑

M
j=1 β j(1)π j

With both the forward and backward variables, it is straightforward to calculate the

posterior probability of being in state j at time tn, given the observation sequence and

model parameters. This is given by the forward-backward variable γ j(n),

γ j(n) =
α j(n)β j(n)

P(xN
1 |θ)

=
α j(n)β j(n)

∑
M
i=1 αi(n)βi(n)

(4.2)

where 1≤ n≤ N. The most likely hidden state at time tn can then be determined by

zn = arg max1≤ j≤Mγ j(n) . (4.3)

4.1.3 Parameter estimation

Parameter estimation is one of the most important problems associated with the HMM.

The goal is to determine argmaxθ∈Θ P(xN
1 |θ), the maximum likelihood (ML) parameters,
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given observed data xN
1 . This requires estimating the starting probabilities, transition prob-

abilities, and emission distribution parameters. The starting and transition parameters have

closed-form solutions, while the formula for the emission distribution parameters depends

on the density function. There are closed-form solutions for multinomial, discrete binomial,

Poisson, Gaussian, and Gaussian mixture distributions, among others (Couvreur, 1996).

Let ξi j(n) be the probability of transitioning from state i at time tn to state j at time tn+1,

given the observation sequence and model parameters θ . This is can be determined using

the forward and backward variables, transition probability, and emission density, given by

ξi j(n) =
αi(n)ai j f (xn+1;b j)β j(n+1)

P(xN
1 |θ)

=
αi(n)ai j f (xn+1;b j)β j(n+1)

∑
M
k=1 αk(n)βk(n)

(4.4)

where 1≤ n≤N−1. Like the other variables, ξi j(n) can be computed in O(M2N) time and

stored in a M×M×N−1 matrix. Note that since ξi j(n) is the probability of transitioning

from state i at time tn to state j at time tn+1, the relation

γi(n) =
M

∑
j=1

ξi j(n)

holds. Summing γ j(n) over tn gives the expected number of transitions from state j, while

summing ξi j(n) over tn gives the expected number of transitions from i to j.

The variables γ j(n) and ξi j(n) can then be used to update the parameters. The new

starting probabilities are determined directly from γ j(1),

π̇ j = γ j(1) . (4.5)

The transition matrix is updated by the formula

ȧi j =
∑

N−1
n=1 ξi j(n)

∑
N−1
n=1 γi(n)

(4.6)

and the updated steady state probabilities are given by
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Π̇ j =
∑

N
n=1 γ j(n)

∑
M
i=1 ∑

N
n=1 γi(n)

. (4.7)

The re-estimates for parameter vectors b j, 1≤ j ≤M, depend on the density function f (·),
where

ḃ j = argmax
b∈B

N

∑
n=1

γ j(n) ln f (xn;b) (4.8)

and B is the parameter space of f (·). The complete parameter estimation procedure, com-

monly referred to as the Baum-Welch (BW) algorithm, is shown in Algorithm 4.3.

Algorithm 4.3 HMM Baum-Welch algorithm for parameter estimation.

1. Initialization
Choose initial parameters θ 0 and let θ̇ ← θ 0

2. Expectation
Use θ̇ and xN

1 to compute α j(n), β j(n), γ j(n), ξi j(n), and let Ṗ← P(xN
1 |θ)

3. Maximization
Update π , A, and b using the re-estimation formulae and let θ̇ ←{π̇, Ȧ, ḃ}

4. Termination
If P(xN

1 |θ̇)− Ṗ < ε then terminate and let θ̂ ← θ̇ , otherwise go to step 2

4.1.4 Prediction

An important problem in many behavioral analyses is predicting future actions. For the

HMM, the goal is to estimate E[xN+1|xN
1 ,θ ], the expected value of the next observation,

given an observation sequence and model parameters. When applied to time intervals, this

gives a prediction of the next event time.

The observation vector can be predicted by taking the expected observation in each

state weighted by the likelihood of being in each state. This is given by

x̂N+1 =
M

∑
j=1

P(zN+1 = j|xN
1 )E[xN+1|zN+1 = j] (4.9)
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Figure 4.2: Two-state hidden Markov model (original figure).

where

P(zN+1 = j|xN
1 ) =

∑
M
i=1 ai jαi(N)

∑
M
i=1 αi(N)

and αi(N) is determined 4.1. The expected observation vector in state j, E[xN+1|zN+1 = j],

is determined directly by the density f (·;b j).

4.1.5 Hidden Markov model for time intervals

A two-state HMM is defined where states correspond to the active and passive states of the

user. The resulting model is shown in Figure 4.2.

As seen in Chapter 3, human-generated time intervals are well described by a log-

normal distribution. This serves as motivation for choosing the log-normal as the density

function for time intervals τ , given by

f (τ;η ,ρ) =
1

τρ
√

2π
exp
(−(lnτ−η)2

2ρ2

)
(4.10)

where η is the log-mean and ρ is the log-standard deviation. Note that a mixture of log-

normals also gives rise to a log-normal. The log-normal parameter re-estimation formulae

are given by

η̇ j =
∑

N
n=1 γ j(n) lnτn

∑
N
n=1 γ j(n)
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and

ρ̇
2
j =

∑
N
n=1 γ j(n)(lnτn− η̇ j)

2

∑
N
n=1 γ j(n)

respectively. A normal distribution is used for additional numerical features, where the

normal density is defined as

f (x; µ,σ) =
1

σ
√

2π
exp
(−(x−µ)2

2σ2

)
(4.11)

Parameters µ and σ are re-estimated similarly by

µ̇ j =
∑

N
n=1 γ j(n)xn

∑
N
n=1 γ j(n)

(4.12)

and

σ̇
2
j =

∑
N
n=1 γ j(n)(xn− µ̇ j)

2

∑
N
n=1 γ j(n)

(4.13)

where xn is a scalar component of xn. Note that this definition assumes independence

between features since covariance terms are not considered.

4.2 Partially observable states

In time interval data, there is often some additional information about the event that gives

an indication as to the hidden state. This could be the name of a key that was pressed

while typing, the type of commit made to a source code repository, or some other symbol

that indicates the type of action that occurred. Certain types of actions, or events, indicate a

greater probability of being in a particular hidden state. For example in keystroke dynamics,

the probability of being in a passive state should be greater when the Space key is pressed

than any letter key. The key name is a partially observed state, or p-state for short, which

partially reveals the hidden state of the system. This phenomenon has been observed in

transcription typists (Salthouse, 1986), however the HMM defined in the previous section

cannot account for the difference probability due to the type of event that occurred.
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Figure 4.3: Partially observable hidden Markov model structure (original figure).

Let ω be a p-state symbol that comes from a finite alphabet of size m. In the partially

observable hidden Markov model, the true system state is a latent variable and depends on

both the p-state ω and the previous hidden state. The POHMM dependency structure is

shown in Figure 4.3.

The p-state introduces a dependence into the HMM parameters defined in the previous

section. Specifically, model parameters include π j|ω , the probability of starting in state j,

given p-state ω , and b j|ω for the parametrized emission distribution f (·;b j|ω) that depends

on p-state ω . Similarly, the probability of transitioning between states i and j, given p-

states ω and ψ , is denoted by ai j|ω,ψ . A summary of POHMM parameters and variables is

shown in Table 4.1.

Marginal distribution parameters can also be defined, where the p-state is marginalized

out. Let π j|. and f (·;b j|.) be the marginalized starting probability and emission probability,

respectively. Similarly, the parameters ai j|ω., ai j|.ω , and ai j|.. are defined as the transition

probabilities after marginalizing out the second, first, and both p-states, respectively. Com-

putation of POHMM marginal distributions is covered in Section 4.5.2.

While the total number of parameters in a HMM is M + M2 + MK, where K is

the number of free parameters in the emission distribution f (·), the POHMM contains
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Parameter
or Variable

Description

xN
1 Sequence of observed values, where xn may be a scalar or a vector

ΩN
1

Sequence of partially observable states, where the length of ΩN
1 is N and

Ωn is the p-state at time tn
m The number of unique p-states in ΩN

1
ω or ψ Partially observed state (p-state)

zn Hidden state of the system at time tn
M The number of hidden states

ai j|ω,ψ
Probability of transitioning from state i to state j, given observed p-state
ω while in state i and ψ in state j

π j|ω Probability of being in state j at time t1, given observed p-state ω

Π j|ω Steady state probability of being in state j, given p-state ω

b j|ω Observation distribution parameters in state j, given p-state ω

γ j|ω(n)
Posterior probability of being in state j, given observations and p-state ω

at time tn

ξi j|ω,ψ(n)
Posterior probability of transitioning from state i at time tn to state j at
time tn+1, given p-state ω and ψ at times tn and tn+1, respectively

Table 4.1: Summary of POHMM parameters and variables.

m× (M + mM2 + MK) parameters. (Note that this does not include marginal distribu-

tion parameters). After accounting for normalization constraints, the number of degrees of

freedom (dof ) is m× (M− 1+mM(M− 1)+MK), corresponding to the number of free

parameters. This will reduce further after parameter smoothing strategies are applied, as

discussed in Section 4.5.3.

4.3 Model likelihood

The POHMM likelihood is computed by a modified forward procedure, similar to the

HMM. At each time step tn, the system emits a partially observable state Ωn and is in 1

out of M hidden states. The model likelihood is given by P(xN
1 |θ ,ΩN

1 ), which is the proba-

bility of the observation sequence, given both the model parameters θ and the sequence of

p-states ΩN
1 . This can be calculated using the conditional model parameters π j|ω , ai j|ω,ψ ,
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and b j|ω for hidden states 1 ≤ j ≤ M and p-states ω,ψ ∈ ΩN
1 . The modified forward al-

gorithm and backward algorithm for the POHMM are shown in Algorithms 4.4 and 4.5,

respectively.

The model likelihood may be obtained by either algorithm upon termination. Note that

like the HMM, the modified forward and backward algorithms both take O(M2N) time

to compute. The forward variable α j|Ωn(n) is the probability of observing the sequence

xn
1 and being in state j at time tn, given the model parameters θ and the observed p-state

sequence Ωn
1 with p-state Ωn at time tn. Similarly, the backward variable β j|Ωn(n) is the the

probability of the observing the sequence xN
n and being in state j at time tn, given the model

parameters θ and the observed p-state sequence ΩN
n with p-state Ωn at time tn.

Algorithm 4.4 POHMM forward algorithm.

1. Initialization: α j|Ω1(1) = f (x1;b j|Ω1)π j|Ω1

2. Induction: α j|Ωn+1(n+1) =
(
∑

M
i=1 αi|Ωn(n)ai j|Ωn,Ωn+1

)
f (xn+1;b j|Ωn+1)

3. Termination: P(xN
1 |θ ,ΩN

1 ) = ∑
M
j=1 α j|ΩT (N)

Algorithm 4.5 POHMM backward algorithm.

1. Initialization: β j|ΩT (N) = 1

2. Induction: βi|Ωn(n) = ∑
M
j=1 ai j|Ωn,Ωn+1 f (xn+1;b j|Ωn)β j|Ωn+1(n+1)

3. Termination: P(xN
1 |θ ,ΩN

1 ) = ∑
M
j=1 β j|ω(1)π j|ω

4.4 Hidden states

Determination of the most likely sequence of hidden states proceeds similar to the HMM,

using the p-state dependent parameters. First, the posterior probability of being in state j

at time tn, given observed p-state Ωn, is defined using the POHMM forward and backward

variables
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γ j|Ωn(n) =
α j|Ωn(n)β j|Ωn(n)

P(xN
1 |θ ,ΩN

1 )
=

α j|Ωn(n)β j|Ωn(n)

∑
M
i=1 αi|Ωn(t)βi|Ωn(n)

. (4.14)

Hidden states are then taken as the maximum likelihood states at each time step,

zn = arg max1≤ j≤Mγ j|Ωn(n) . (4.15)

4.5 Parameter estimation

Parameter estimation is similar to the HMM, where the POHMM uses a modified Baum-

Welch algorithm. From the modified forward-backward variable given by Equation 4.14,

the POHMM starting probabilities are

π̇ j|ω = γ j|Ω1(1) where ω = Ω1 . (4.16)

Generally, it may not be possible to estimate π̇ j|ω for many ω due to there only being

one Ω1 (or several Ω1 for multiple observation sequences). To deal with this, parameter

smoothing is introduced in Section 4.5.3.

To complete the equations for updating parameters in the modified Baum-Welch algo-

rithm, the POHMM analogue of ξi j(t) defined for the HMM in Equation 4.4 is needed. Let

ξi j|Ωn,Ωn+1(n) be the probability of transitioning from state i at time tn to state j at time tn+1,

given the observed p-states Ωn at time tn and Ωn+1 at time tn+1 as well as the observation

sequence and model parameters θ . Using the POHMM forward and backward variables,

this is given by

ξi j|Ωn,Ωn+1(n) =
αi|Ωn(n)ai j|Ωn,Ωn+1 f (xn+1;b j|Ωn+1)β j|Ωn+1(n+1)

P(xN
1 |θ ,ΩN

1 )
1≤ n≤ N−1 .

(4.17)

Note that computing ξi j|ω,ψ(n) for the POHMM can be performed in linear time in the

number of observations, O(M2N), since the p-states are not enumerated at each time step.
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Next, the transition probabilities are estimated. In contrast to the HMM, which has M2

transition probabilities, there are m2M2 transition probabilities in the POHMM. Computing

the updated transition probabilities can be performed in O(M2N) time. The equation is

ȧi j|ω,ψ =
∑n∈Tω,ψ

ξi j|Ωn,Ωn+1(n)

∑n∈Tω,ψ
γi|Ωn(n)

Tω,ψ = {n|Ωn = ω,Ωn+1 = ψ} (4.18)

where Tω,ψ = {n|Ωn = ω,Ωn+1 = ψ} is the set of indexes where the p-state ω is observed

at time tn and ψ is observed at time tn+1. Note that ȧi j|ω,ψ requires only the transitions

between p-states ω and ψ .

Estimating the emission distribution parameters depends on the density function f (·),
where the new estimates are given by

ḃ j|ω = argmax
b∈B ∑

n∈Tω

γ j|Ωn(n) ln f (xn;b) Tω = {n|Ωn = ω} (4.19)

As an example, the normal emission distribution parameters can also be estimated for the

POHMM, conditional on the p-state. Using the forward-backward variable from Equation

4.14,

µ̇ j|ω =
∑n∈Tω

γ j|Ωn(n)xn

∑n∈Tω
γ j|Ωn(n)

Tω = {n|Ωn = ω} (4.20)

and

σ̇
2
j|ω =

∑n∈Tω
γ j|Ωn(n)(xn− µ̇ j|ω)2

∑n∈Tω
γ j|Ωn(n)

Tω = {n|Ωn = ω} (4.21)

are the updated mean and variance estimates for hidden state j, given p-state ω . Note

that the estimates depend only on the elements of γΩn(n) where Ωn = ω . The log-normal

POHMM emission parameters are re-estimated similarly.

The modified Baum-Welch algorithm, which uses Equations 4.16, 4.18, and 4.19 to

update model parameters in each iteration, is shown in Algorithm 4.6. The convergence

criterion is a threshold ε on the loglikelihood reduction. The rest of this section deals with
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other aspects of parameter estimation, including initialization, marginal distributions, and

parameter smoothing.

Algorithm 4.6 POHMM modified Baum-Welch algorithm.

1. Initialization
Choose initial parameters θ 0 and let θ̇ ← θ 0

2. Expectation
Use θ̇ , xN

1 , ΩN
1 to compute α j|Ωn(n), β j|Ωn(t), γ jΩn(n), ξi jΩn,Ωn+1(n), let Ṗ ←

P(xN
1 |θ ,ΩN

1 )

3. Maximization
Update π , A, and b using the re-estimation formulae and let θ̇ ←{π̇, Ȧ, ḃ}

4. Termination
If P(xN

1 |θ̇ ,ΩN
1 )− Ṗ < ε then terminate and let θ̂ ← θ̇ , otherwise go to step 2

4.5.1 Parameter initialization

Parameter initialization is an important step in the Baum-Welch algorithm and may ulti-

mately determine the quality of the estimated parameters. Initial parameters can either be

generated randomly or fixed according to some rules. In this work, a fixed parameter initial-

ization strategy is used, which guarantees reproducible parameter estimates. The problem

of initializing a random POHMM is covered in Section 4.8.

The starting and transition probabilities are simply initialized as

π j|ω =
1
M

and

ai j|ω,ψ =
1
M

for all i, j, ω , and ψ . This reflects the belief of equal probabilities in the absence of any

particular ω in ΩN
1 .
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Next, the emission density parameters are initialized. The strategy proposed here is to

initialize parameters in such a way that there is a correspondence between hidden states

from two different models. That is, for any two models A and B, hidden state j = 1 cor-

responds to the active state and j = 2 corresponds to the passive state. Using a log-normal

emission distribution for time intervals, this is accomplished by spreading the log-mean

initial parameters. Let

ηω =
∑n∈Tω

lnxn

|Tω |
Tω = {n|Ωn = ω}

and

ρ
2
ω =

∑n∈Tω
(lnxn−η j|ω)2

|Tω |
Tω = {n|Ωn = ω}

be the log-mean and log-variance of observations xN
1 conditional on the p-state ω . The

model parameters are then initialized as

η j|ω = ηω +

(
2h( j−1)

M−1
−h
)
×ρω

and

ρ
2
j|ω = ρ

2
ω

for 1≤ j ≤M, where h is a bandwidth parameter that determines the size of the spread. In

a two-state model, this ensures that state j = 1 corresponds to the active state, i.e. the state

with the smallest log-mean time interval.

4.5.2 Marginal distributions

In order for the POHMM to handle missing or novel p-states during likelihood calcula-

tion, the marginal distributions are calculated. When computing the likelihood of a novel

sequence, it is possible that some p-states in the novel sequence were not observed dur-

ing parameter estimation. For example, this situation can occur when p-states correspond

to key names of freely-typed text and novel keys are observed during testing. A fallback
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mechanism (sometimes referred to as a “backoff” model) is typically employed to handle

missing data during training and novel data during testing, such as those used in keystroke

(Monaco et al., 2013; Tappert et al., 2010) and linguistics (Jurafsky et al., 2000). The

POHMM marginal distributions, where the p-state is marginalized out, are analogous to a

two-level fallback hierarchy where missing or novel p-states fall back to the marginals.

Let the probability of observing p-state ω at time t1 be πω , and the probability of tran-

sitioning from p-state ω to ψ be denoted by aω,ψ . Both of these can be computed directly

from the p-state sequence ΩN
1 . The marginal probability π j|. is the probability of starting in

hidden state j, in which the p-state has been marginalized out, given by

π j|. = ∑
ω∈Ω

π j|ωπω (4.22)

where Ω is the set of unique p-states in ΩN
1 .

Marginal transition probabilities can also be calculated. Let ai j|ω. be the probability

of transitioning from hidden state i to hidden state j, given the observed p-state ω while

in hidden state i. The second p-state for hidden state j has been marginalized out. This

probability is given by

ai j|ω. = ∑
ψ∈Ω

ai j|ω,ψaω,ψ (4.23)

The marginal probability ai j|.ω is defined similarly by

ai j|.ψ =
∑ω∈Ω ai j|ω,ψaω,ψ

∑ω∈Ω aω,ψ
(4.24)

Finally, the marginal ai j|.. is the probability of transitioning from hidden state i to j,

ai j|.. =
1
m ∑

ω∈Ω

∑
ψ∈Ω

ai j|ω,ψaω,ψ (4.25)

No denominator is needed in Equation 4.23 since the normalization constraints of both

transition matrices carry over to the left-hand side. Equation 4.25 is normalized by 1
m since

∑ω∈Ω ∑ψ∈Ω aω,ψ = m where m is the number of unique p-states in Ω.
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The marginal emission distribution is a mixture of the emissions of the partially ob-

served states. For a normal or log-normal emission, the marginal emission is simply a

mixture of normals or log-normals, respectively. Let µ j|. and σ2
j|. be the mean and variance

of the marginal distribution for hidden state j. The marginal mean is a weighted sum of the

p-state distributions, given by

µi|. = ∑
ω∈Ω

Πω µi|ω (4.26)

where Πω is the stationary probability of observing p-state ω . This can be calculated

directly from the p-state sequence ΩT
1 , where

Πω =
1
N

N

∑
n=1

I (Ωn = ω)

and I (·) is the indicator function. Similarly, the marginal covariance is given by

σ
2
j|. = ∑

ω∈Ω

Πω

[(
µ j|ω −µ j|.

)2
+σ

2
j|ω
]
. (4.27)

Calculation of the marginalized log-normal distribution parameters is exactly the same.

4.5.3 Parameter smoothing

While the marginal distributions can be used to handle missing or novel data during like-

lihood calculation, parameter smoothing handles missing or infrequent data during param-

eter estimation. The purpose of parameter smoothing is twofold. First, it reduces the dof

in the POHMM to avoid overfitting, a problem often encountered when there is a large

number of parameters and small amount of data. Second, parameter smoothing provides

superior estimates in the case of missing or infrequent data. For motivation, consider a

keystroke letter sequence of length N. There are at most 27 unique keys that can be ob-

served, including the space key, and 27× 27 unique digrams (subsequences of length 2).

Most of these will rarely, or never, be observed in a typing sample of English text. It is

possible that some sequences encountered in the testing phase were not observed during
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parameter estimation. The POHMM handles data sparsity by smoothing the parameters

dependent on the various p-states for a given hidden state j.

After parameter smoothing, each parameter in the POHMM becomes a weighted av-

erage with the corresponding marginal parameters. There are several different weighting

strategies that can be used. An inverse frequency strategy uses the p-state frequencies to

define the weights as

wω = 1− 1
1+ f (ω)

where f (ω) = ∑
N
t=1 I (Ωn = ω), the frequency of p-state ω in the observed sequence ΩN

1 .

Alternatively, the stationary probabilities can be used as the weights, where

wω = Πω .

There are other possibilities for assigning a weight for each p-state, such as using fixed

weights.

The POHMM starting probabilities are smoothed by

π j|ω = wωπ j|ω +(1−wω)π j|.

for each ω ∈ Ω. This ensures that the starting probability conditioned on infrequent or

missing p-states is estimated using some knowledge from the marginalized starting proba-

bility. Similarly, emission parameters are smoothed by

b j|ω = wωb j|ω +(1−wω)b j|.

The smoothing weights for transition probabilities follow similar formulae. Let f (ω,ψ) be

the frequency of p-state state ω followed by ψ in the observed sequence ΩT
1 . Weights for

the conditional and marginal transition probabilities are defined as
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wω. =
1

f (ω,ψ)+ f (ψ)

w.ψ =
1

f (ω,ψ)+ f (ω)

wω,ψ = 1−
(

1
f (ω,ψ)+ f (ω)

+
1

f (ω,ψ)+ f (ψ)

)

w.. = 0

where wω,ψ +wω.+w.ψ +w.. = 1. The smoothed parameter transition matrix is given by

ai j|ω,ψ = wω,ψai j|ω,ψ +wω.ai j|ω.+w.ψai j|.ψ +w..ai j|..

In this strategy, the weight for the marginal ai j|.. is 0, although in other strategies this could

be non-zero. The parameter estimation procedure, including marginal calculations and

parameter smoothing, is given by Algorithm 4.7.

Algorithm 4.7 POHMM parameter estimation.

1. Initialization
Choose initial parameters θ 0 and let θ̇ ← θ 0

2. Expectation
Use θ̇ , xN

1 , ΩN
1 to compute α j|Ωn(n), β j|Ωn(n), γ jΩn(n), ξi jΩn,Ωn+1(n), let Ṗ ←

P(xN
1 |θ ,ΩN

1 )

3. Maximization
Update π , A, and b using the re-estimation formulae and let θ̇ ←{π̇, Ȧ, ḃ}

4. Marginal distributions
Calculate marginal distributions

5. Parameter smoothing
Calculate smoothing weights and smooth the parameters with marginals

6. Termination
If P(xN

1 |θ̇ ,ΩN
1 )− Ṗ < ε then terminate and let θ̂ ← θ̇ , otherwise go to step 2



CHAPTER 4. PARTIALLY OBSERVABLE HIDDEN MARKOV MODEL 78

4.6 Prediction

Predictions can be made by the POHMM when the future p-states are either known or

unknown. When the future p-state is known,

x̂N+1 =
M

∑
j=1

P(zN+1 = j|xN
1 ,Ω

N+1
1 )E[xN+1|zN+1 = j,ΩN+1 = ω] (4.28)

where

P(zN+1 = j|xN
1 ,Ω

N+1
1 ) =

∑
M
i=1 ai j|ΩN ,ΩN+1αi|ΩN (N)

∑
M
i=1 αi|ΩN (N)

since ω is known at time N +1. Otherwise, when the future p-state is unknown,

x̂N+1 = ∑
ω∈Ω

M

∑
j=1

P(ΩN+1 = ω,zN+1 = j|xN
1 ,Ω

N
1 )E[xN+1|zN+1 = j,ΩN+1 = ω] (4.29)

where

P(ΩN+1 = ω,zN+1 = j|xN
1 ,Ω

N
1 ) =

aΩN ,ω ∑
M
i=1 ai j|ΩN ,ωαi|ΩN (N)

∑
M
i=1 αi|ΩT (T )

.

In both scenarios,

E[xN+1|zN+1 = j,ΩN+1 = ω] = E[ f (·;b j|ω)] .

4.7 Example

To illustrate the utility of the POHMM, a simple example is developed. This section

will demonstrate parameter estimation, the calculation of marginal distributions, param-

eter smoothing, and likelihood calculation. Consider the univariate observation sequence,

xN
1 = 4 3 4 2 3 1

where N = 6. Assume that the observed values come from a normal distribution and that

the system can be in either an active or passive state at each time step. Although the true
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state of the system is hidden at each time step, a sequence of partially observed states

accompany xN
1 . The p-states correspond to the type of action or event that took place at

each time step, given by

Ω
N
1 = b a b a c a

where the alphabet of partial states is Ω = {a,b,c}. Therefore, the parameters for a

POHMM will be estimated with normal emission, M = 2 hidden states, and m = 3 p-states.

4.7.1 Parameter initialization

The first step is parameter initialization. The starting and transition probabilities are initial-

ized as

πi|ω =
1
M

=
1
2

for ω ∈Ω

ai j|ω,ψ =
1
M

=
1
2

for ω,ψ ∈Ω .

Using a normal distribution, the emission parameters µi|ω and σi|ω must be initialized for

each hidden state i conditional on each partially observed state ω . The unconditional means

µω and standard deviations σω are first determined for each p-state:

µa = 2, µb = 4, µc = 3

σa = 2, σb = 4, σc = 3

The conditional parameters, µi|ω and σi|ω , are then initialized using the formula given in

Section 4.5.1, where µ1|a = µa−σa, µ2|a = µa +σa, etc. This spreads the hidden state

means, given each p-state. Marginal distributions for each hidden state can then be deter-

mined, as described in Section 4.5.2. The marginals will be used for parameter smoothing,

which is performed immediately after parameter initialization.
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Parameter Before smooth After smooth Parameter Before smooth After smooth
µ1|a -0.13 0.07 σ1|a 0.82 0.88
µ2|a 4.13 4.34 σ2|a 0.82 0.88
µ1|b 1.87 1.48 σ1|b 0.00 0.36
µ2|b 6.13 5.75 σ2|b 0.00 0.36
µ1|c 0.87 0.78 σ1|c 0.00 0.53
µ2|c 5.13 5.05 σ2|c 0.00 0.53

Table 4.2: POHMM example initial parameters before and after smoothing.

Marginal distributions for the emission parameters are determined by the conditional

distribution parameters. These are straightforward to compute as a mixture of normals

using Equations 4.26 and 4.27, where

µ1|. = 0.70, µ2|. = 4.97

σ1|. = 1.07, σ2|. = 1.07

4.7.2 Parameter smoothing

After parameters are initialized and marginal distributions are calculated, smoothing is per-

formed. The smoothing strategy relies on the p-state frequencies. Therefore, the marginal

distributions will be weighted more heavily for infrequently occurring p-states than fre-

quent p-states. As an example, consider the standard deviations for hidden state 1, given

partially observed states b and c, namely σ1|b = 0 and σ1|c = 0. These estimates result

in degenerate distributions, a problem encountered when model parameters outnumber the

data. Parameter smoothing will avoid overfitting by reducing the dof of the model. Let

wω be the weight given to the parameters for the distribution conditioned on the partially

observed state ω , and (1−wω) be the weight given to the marginal distribution. Using the

inverse frequency smoothing strategy, the weights are determined by the p-state inverse fre-

quencies, where wb = 1− 1
1+ f (b) =

2
3 and wc = 1− 1

1+ f (c) =
1
2 . The conditional parameters
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Emission

µ1|. 2.60 σ1|. 1.20 µ2|. 3.24 σ2|. 0.61
µ1|a 1.80 σ1|a 0.75 µ2|a 2.91 σ2|a 0.45
µ1|b 3.53 σ1|b 0.40 µ2|b 3.75 σ2|b 0.20
µ1|c 2.80 σ1|c 0.60 µ2|c 3.12 σ2|c 0.31

Transition

a11|. 0.65 a11|.a 0.97 a11|.b 0.01 a11|.c 0.03
a11|a. 0.02 a11|aa 0.54 a11|ab 0.01 a11|ac 0.03
a11|b. 0.94 a11|ba 0.94 a11|bb 0.56 a11|bc 0.56
a11|c. 1.00 a11|ca 0.99 a11|cb 0.51 a11|cc 0.52
a22|. 0.51 a22|.a 0.28 a22|.b 0.99 a22|.c 0.97
a22|a. 0.98 a22|aa 0.55 a22|ab 0.99 a22|ac 0.97
a22|b. 0.55 a22|ba 0.50 a22|bb 0.69 a22|bc 0.68
a22|c. 0.00 a22|ca 0.09 a22|cb 0.49 a22|cc 0.48

Starting π1|. 0.00 π1|a 0.08 π1|b 0.00 π1|c 0.02
Stationary Π1|. 0.37 Π1|a 0.73 Π1|b 0.01 Π1|c 0.03

Table 4.3: POHMM example estimated parameters.

are updated to

σ̇1|b = wb×σ1|b +(1−wb)×σ1|.

=
2
3
×0+

1
3
×1.07 = 0.36

and

σ̇1|c = wc×σ1|c +(1−wc)×σ1|.

=
1
2
×0+

1
2
×1.07 = 0.53 .

Since c has only been observed one time, more weight is placed on the marginal parameter

σ1|.. In both cases, a degenerate normal distribution is avoided. Table 4.2 shows the initial

emission parameters before and after smoothing is performed.
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4.7.3 Parameter estimation

After initialization, the modified Baum-Welch algorithm is used to determine parameters,

as described in Algorithm 4.7. Each iteration in the modified Baum-Welch algorithm con-

sists of an E step, M step, marginals calculation, and parameter smoothing. Convergence

is reached when the difference between the loglikelihood from successive iterations is less

than 10−6, which happens after 3 iterations. The final parameters are shown in 4.3, where

the sequence above has a loglikelihood of −3.18. The transition, starting, and steady state

probabilities are shown for only one hidden state since the other is implied in a two-state

model. Figure 4.4 shows part of the fitted model, namely the marginal and event-type-a

emission parameters, and the marginal-to-marginal, marginal-to-a, a-to-marginal, and a-

to-a transition parameters.

4.7.4 Likelihood calculation

The fitted model can be used to obtain the likelihood of a novel event sequence. Consider

the test observation sequence

yN
1 = 2 1 6

with partially observed states

Ψ
N
1 = c a d

where the symbol d has not been observed during parameter estimation. The log forward

lattice as determined by Algorithm 4.4 is shown is Table 4.4. In this example, the a-to-

marginal transition probabilities, a11|a., a12|a., a21|a., and a22|a., are used going from n = 2

to n = 3 since d was not observed during parameter estimation. The resulting loglikelihood

of the observation sequence is given by

log
2

∑
j=1

exp
[
α j (3)

]
=−15.11 .
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Figure 4.4: POHMM example showing emissions and transitions between hidden states of
the marginal distribution and event type a. Emission µ parameters are shown in the small
center boxes. Hidden states are along the vertical, and partially observed states are along
the horizontal (original figure).

n
1 2 3

α j (n) =
-5.42 -6.33 -15.28 1

j
-6.40 -17.63 -16.96 2

Table 4.4: POHMM example forward lattice.
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4.8 Consistency

It is important for model parameter estimation to be consistent (Newey and McFadden,

1994). This requires that parameter estimation be both convergent and asymptotically un-

biased. While the BW algorithm for HMM parameter estimation has these properties, it is

not clear whether the modified BW for POHMM parameter estimation also does. Specifi-

cally, parameter smoothing violates the maximization step in the EM algorithm.

The POHMM consistency is demonstrated is this section using computational methods.

First, a model is initialized with parameters θ0. From this model, S time interval samples

are generated, each containing N time intervals. For each time series τ , the best-estimate

parameters θ̂ are computed using the modified BW algorithm in Algorithm 4.7. As N

increases, with sufficiently large S, the scaled residuals of a consistent model will go to

0. The convergence to 0 should also be insensitive to the choice of θ0. Let θ̂N be the

parameters determined by the modified Baum-Welch algorithm for an observed time series

of length N generated from a POHMM with true parameters θ 0. The model is consistent if

lim
N→∞

|θ̂N−θ 0|
max

θ̂
|θ̂N−θ 0|

= 0 . (4.30)

This procedure requires generating a random POHMM in which certain parameter con-

straints need to be met. The starting probabilities and transition matrix are first generated

for the partially observed states. The conditional transition matrices between the hidden

states of each pair of partial states is then generated. Marginals are then determined as

described in Section 4.5.2. Rows of the transition matrices should be uniformly distributed

and must sum to 1.

A uniformly-random transition matrix can be generated as follows. Each row must sum

to 1 and therefore has M− 1 dof. Generate M− 1 random numbers between 0 and 1 and

then sort the list of numbers with 0 and 1 concatenated. Take the difference between the

list of M+1 numbers to get M uniformly-distributed numbers that sum to 1. Repeat this M

times to get an M×M transition matrix or just once to get the array of starting probabilities.

The algorithm for generating a stochastic matrix is summarized in Algorithm 4.8.
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Algorithm 4.8 Random transition matrix generation.

1. Generate M−1 numbers between 0 and 1

2. Concatenate 0 to the beginning and 1 to the end of the list of sorted numbers

3. Take the differences between the list of M +1 numbers to get M uniformly-random
numbers that sum to 1

4. Repeat steps 1-3 M times to generate an M×M transition matrix.

A POHMM with 3 partially observed states, Ω = {a,b,c} and 2 hidden states for each

p-state is generated. A normal distribution is chosen for emissions, with parameters com-

parable to the key-press latencies in typing. For each value of N, 100 length-N samples

are generated. Each sample consists of the observations time series and partially observed

states. To generate a sample, first N partially observed states are generated according to the

p-state transition matrix. The conditional parameters are then used to generate the sequence

of hidden states and observed values.

Figure 4.5 shows the scaled residuals for emission parameters without parameter

smoothing. Central lines indicate the median, boxes depict the interquartile range, and

whiskers show the 95% confidence interval. Outliers are shown as points outside the

whiskers. The residuals go to 0 as N increases, indicating convergent and unbiased es-

timates. The same test is repeated with a POHMM that uses inverse frequency weights for

parameter smoothing. The scaled residuals are shown in Figure 4.6. The results indicate

the model is consistent. As N increases, the smoothing strategy weights the marginal distri-

butions less and the conditionals approach those that would be obtained without smoothing.

Figure 4.7 shows the sum of absolute residuals for various parameter groups, comparing

the smoothed parameter residuals to those obtained without smoothing. The smoothed

parameter residuals are generally lower than those without smoothing.
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Figure 4.5: POHMM scaled residuals for emission parameters. Central lines indicate the
median, boxes depict the interquartile range, and whiskers show the 95% confidence inter-
val. Outliers are shown as points outside the whiskers (original figure).
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Figure 4.6: POHMM scaled residuals for emission parameters with smoothing. Central
lines indicate the median, boxes depict the interquartile range, and whiskers show the 95%
confidence interval. Outliers are shown as points outside the whiskers (original figure).
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Figure 4.7: POHMM parameter residuals with and without smoothing, showing the sum of
absolute residuals of various parameter groups as N increases. Smoothing generally results
in better estimates, demonstrated by smaller residuals. Bands show the 95% confidence
intervals (original figure).
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Figure 4.8: Partly hidden Markov model structure (original figure).

4.9 Discussion

There have been various generalizations of the HMM to deal with hidden states that are par-

tially observable in some way. Partial observability may be provided through assumptions

about the hidden state, uncertain labels, or contextual information. There is some overlap

in the terminology surrounding various models that have been proposed, as explained in

this section.

The partly hidden Markov model (partly-HMM) is a second order model in which the

first state is hidden and the second state is observable (Kobayashi and Haruyama, 1997).

The structure of the partly-HMM is shown in Figure 4.8 where both the state and obser-

vation at time t are dependent on the observation at time t− 1. The partly-HMM can be

applied to problems that have a transient underlying process, such as gesture and speech

recognition, as opposed to a piecewise stationary process that the HMM assumes (Iobayashi

et al., 1999). Parameter estimation can be performed by the EM algorithm, similar to the

HMM.

Partially observable states can also come in the form of partial and uncertain ground

truth regarding the hidden state at each time step. The partially hidden Markov Model

(partially-HMM) deals with this scenario, in which an uncertain hidden state label may

observed at each time step (Ozkan et al., 2014). The probability of observing the uncertain

label and the probability of the label being correct, were the true hidden state known, are

controlled by parameters pobs and ptrue, respectively. The probability of observing a correct



CHAPTER 4. PARTIALLY OBSERVABLE HIDDEN MARKOV MODEL 90

  

z1 z2 zT−1 zT

y1Uncertain label

Hidden state

Observation 

0 1 2 T−1 T

x1 x2 xT −1 xT

y2 yT−1 yT

t

Figure 4.9: Partially hidden Markov model structure (original figure).

label is pobs× ptrue. The structure of the partially-HMM is shown in Figure 4.9. This type

of model is primarily motivated by language modeling applications, in which ground truth

state labels can help in parameter estimation although they may be incorrect or missing

(Merialdo, 1994). Similar to the HMM, the EM algorithm can be used for estimating the

parameters of the partially-HMM (Ozkan et al., 2014).

Previous observations can also provide context for the transition and emission proba-

bilities. Forchhammer and Rissanen (1996) proposed the context hidden Markov model

(context-HMM), in which the transition and emission probabilities at time t are condi-

tioned on an observed context function. The context functions are defined as AV (xt) = vt

and BW (xt−1) = wt for the transition and emission probabilities, respectively, where the

context sequences vt and wt are functions of the observation sequence. At each time step,

the hidden state and observation are dependent on a context from the previous time step,

shown in Figure 4.10. The context-HMM has information theoretic motivations, with ap-

plications such as image compression Forchhammer and Rasmussen (1999). Used in this

way, the neighboring pixels in an image can provide context for the emission and transition

probabilities.
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Figure 4.10: Context hidden Markov model structure (original figure).

Related to stochastic processes with partially observable underlying states is the hidden

semi-Markov model (HSMM) in which the underlying process is a semi-Markov chain

(Ferguson, 1980). Whereas the underlying state of a HMM transitions at each time step, a

HSMM remains in a particular hidden state for a variable number of observations. This type

of model is also sometimes referred to as an “explicit duration HMM” or “variable duration

HMM” (Rabiner, 1989). The hidden state is partially revealed through the passage of time

itself, or alternatively, the number of observations produced in a given state. The HSMM

is described in detail in Yu (2010).

The POHMM, introduced in this work, is an extension of the HMM in which hidden

states are partially observable through event types. A subclass of the POHMM is the HMM

in which the event types are all the same or possibly unknown. The POHMM marginal

distributions can account for missing data during testing, while parameter smoothing helps

to avoid overfitting and accounts for missing data during training. Model consistency was

demonstrated empirically, and the estimated parameter residuals were shown to be lower

when a parameter smoothing strategy is employed. Computational complexities of the
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POHMM parameter estimation and likelihood calculation algorithms are comparable to

that of the HMM, which are linear in the number of observations.

The POHMM is different from the partly-HMM, being a first order model, and differ-

ent from the partially-HMM, since it doesn’t assume a partial labeling. In particular, the

POHMM makes the following assumptions.

1. There is some additional information associated with each event, such as the event

type. This represents the partially observed state.

2. There is a shared underlying stochastic process between events with different types.

This represents the hidden state.

3. Some events have missing or unknown partially observed states.

4. Novel partial states are observed during testing.

The POHMM is most similar to the context-HMM in the sense that emission and transition

probabilities are conditioned on some observed values. There are several important differ-

ences between the POHMM and context-HMM. In the POHMM, the hidden state at time t

is dependent on the partially observed state at times t and t−1, whereas the hidden state of

the context-HMM at time t is dependent only on the context at time t−1. Additionally, the

context sequences are defined as functions of the observed values, which differ from the

partially observed states of the POHMM; the POHMM p-states are composed of metadata

that generally capture the event types. For missing p-states, the marginal distributions of

the POHMM also act as a fallback mechanism, whereas the context-HMM does not ac-

count for missing or undefined context. This is an important distinction since novel p-state

sequences may be observed during testing. The marginal distributions of the POHMM

are also used in parameter smoothing, which reduces the dof of the model and provides

superior parameter estimates with small amounts of data.



Chapter 5

Model evaluation

There are numerous evaluation criteria a model can be subjected to. Usually, the choice

of criteria depend on the problems the model was originally designed to solve. In physics,

models are often evaluated based on their predictive power or plausibility as an underlying

generative mechanism. In biometrics, a model is often evaluated based on how well it can

identify or verify people. The POHMM proposed in Chapter 4 was designed to solve three

problems in biometrics, including identification, verification, and prediction. In this chap-

ter, the criteria for evaluating the discriminative and predictive capabilities of the POHMM

are discussed. Most of the criteria are standard in the biometrics and machine learning

literature.

5.1 Goodness of fit

To determine whether the proposed model is consistent with observed data, a goodness of

fit test is performed through Monte Carlo hypothesis testing. The test proceeds as follows.

For each time interval sample, the model parameters, θ̂m are determined. The area test

statistic between the model and empirical distribution is then taken. The area test statistic

is a compromise between the Kolmogorov-Smirnov (KS) test and Cramer-von Mises test

Malmgren et al. (2008), given by

A =
∫
|PD(τ)−PM(τ|θ̂m)|dτ

93
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Figure 5.1: Area test statistic given by the shaded region (original figure).

where PD is the empirical cumulative distribution and PM is the model cumulative distribu-

tion. An example of calculating A is shown in Figure 5.1.

The marginal density of the model is given by

g(x;θ) =
1

∑
j=0

Π j f (x;b j) (5.1)

where Π j is the steady state probability of being in state j and f is the emission distribution.

Using the fitted model with parameters θ̂m, a surrogate data sample the same size as the

empirical data is generated. The surrogate data is then treated similarly to the empirical

data, where estimated parameters θ̂s are determined. The area test statistic between the

surrogate-data-trained model and surrogate data is computed, given by As. This process

repeats until enough surrogate statistics have accumulated to reliably determine Pr(|As−
〈As〉|> |A−〈As〉|). The biased P value is given by

I (|As−〈As〉|> |Am−〈As〉|)+1
m+1

(5.2)

where I (·) is the indicator function. The testing procedure is summarized in Figure 5.2.

The null hypothesis (that the model is consistent with the data) is tested for each sample in

each dataset. Each test requires fitting S+1 models (1 empirical and S surrogate samples).
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5.2 Identification

Behavioral biometric identification utilizes individual differences in behavior to identify

users. Given a sample from an unknown user, identification requires a choice of 1 out of

U known users. Typically, the proportion of correctly identified samples is used as an em-

pirical measure of classification accuracy (ACC), where random choice has an asymptotic

ACC of 1
U .

Identification is performed by the POHMM as follows. A system of U models is cre-

ated, with one model trained for each user. The likelihood of an unknown sample is deter-

mined for each model. The model with the highest likelihood is chosen as the class label

for the unknown sample. This scenario assumes that the correct class label is contained in

the system, which may or may not be true in practice. Identification accuracy depends on

many factors, including the number of samples used for training, the size of samples, and

number of users in the system.
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Figure 5.3: Binary classification errors (original figure).

5.3 Verification

Verification is a binary decision problem in which a biometric sample with claimed owner-

ship is labeled as either being genuine or an impostor. There are two types of errors that can

occur, as demonstrated by the two-class confusion matrix in Figure 5.3. A false negative, or

false rejection, occurs when a genuine user is rejected by the system, and a false positive,

or false acceptance, occurs when an impostor fails to be rejected by the system. The two

types of error correspond to type I and type II errors in statistics and are typically measured

by the empirical false rejection rate (FRR) and false acceptance rate (FAR), respectively.

There is generally an incentive for an impostor to make a false claim in access con-

trol applications. The usual scenario is an impostor attempts to bypass a biometric access

control system and gain access to sensitive information. There are also situations where it

would be desirable to keep one’s identity hidden. This is more common in forensic appli-

cations, in which verification must be performed on some data that has been collected in

the past with a suspected identity linked to the data. In this scenario, there is incentive for

the genuine user to conceal their true identity.

In any biometric verification system, there is a direct tradeoff between FRR and FAR.

In practice, this corresponds to a tradeoff between convenience and security where higher
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FRR inhibits the normal operation of the system and higher FAR introduces greater risk

of an impostor going undetected. This tradeoff is usually determined by a single model

parameter. With a statistical model such as the POHMM, a decision threshold on the model

likelihood can be used make a verification decision. The likelihood of a sample under the

claimed model is obtained and a decision is made such that above the decision threshold,

the sample is labeled as genuine, and below the decision threshold, the sample is labeled as

an impostor. As the threshold varies, the tradeoff between FRR and FAR is obtained. An

example is shown in Figure 5.4, where FRR increases and FAR decreases as the decision

threshold increases.

The receiver operating characteristic (ROC) curve graphically captures the tradeoff be-

tween FAR and FRR and can be used to evaluate system performance. The ROC curve is

simply the FRR plotted against the FAR. An example ROC curve is shown in Figure 5.5,

which is obtained directly from the data in Figure 5.4. The point on the ROC curve where

FAR and FRR are equal is the equal error rate (ERR). The EER summarizes the perfor-

mance of the system in a single number so that various systems can be compared. As an

alternative to the EER, the total area under the ROC curve is calculated, given by the area

under curve (AUC). The AUC is sometimes preferable since it summarizes the performance
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Figure 5.5: Example ROC curve (original figure).

of the system over the entire curve and not just at a single point. A perfect classifier would

have an AUC of 0, and a random classifier would have an AUC of 0.5. Note that a system

that generates an ROC curve with an EER and AUC of 1 also has perfect classification

since the decisions could be inverted to obtain an EER and AUC of 0.1

A verification decision using the POHMM proceeds as follows. The likelihood of a

query sample is obtained under the model corresponding to the identity of the claimed

user. This score is then normalized by the minimum and maximum likelihoods under every

other model in the system, i.e. the models of every other user. The resulting normalized

score is compared to a decision threshold, which varies between 0 and 1. If the score is

less than the threshold, then the claim is rejected. The aggregation of verifications using all

sample/identity combinations allows the ROC curve to be constructed.

1Some authors use the true positive rate (TPR) instead of the FRR. In this case, a perfect classifier would
have an AUC of 1 and a random classifier an AUC of 0.5.
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5.3.1 Continuous verification

When dealing with behavioral biometrics it makes sense to consider the performance of a

system operating continuously. This is especially true for modalities that produce a contin-

uous stream of events, such as Bitcoin transactions or terrorist activity2. One approach that

has often been used is to split a stream of events into sessions by grouping events within

a time window and then performing static verification, i.e. the entire session is either veri-

fied or rejected (Bours and Mondal, 2015). As the size of the window approaches 1 event,

the granularity of verification increases although the information between sessions is not

utilized.

In this work, continuous verification is enforced through a penalty function in which

each event incurs a non-negative penalty within a rolling window. When the cumulative

penalty incurred within the sliding window exceeds a given threshold, the user is rejected

from the system. The penalty at any given time can be thought of as the inverse of trust.

The sliding window ensures that the maximum achievable penalty is bounded, and may

actually decrease as behavior becomes more consistent with a template. In Bours (2012),

a different approach is taken with a penalty-and-reward function. The approach introduced

here avoids having to determine distance threshold and reward parameters. The sliding

window replaces the reward, since penalties outside the window do not contribute towards

the cumulative penalty.

The penalty of each event is determined as follows. The marginal probability of each

new event, given the preceding events, can be obtained from the forward lattice, α , given

by

P(xt+1|xt
1) = P(xt+1

1 )−P(xt
1)

When a new event is observed, the likelihood is obtained under each model in the system.

The likelihoods are ranked, with the highest given a rank of 0, and the lowest a rank of

U −1, with U models in the system. The penalty is the rank of the claimed user’s model.

Thus, if a single event is correctly identified, a penalty of 0 is incurred. If it scores the

second highest likelihood, a penalty of 1 is incurred, and so on. The rank penalty is added

2This also depends on the application. Keystrokes collected during an online exam could be considered
as belonging to one session, whereas the keystrokes collected by a system-wide logger that is permanently
installed on a machine do not necessarily form a session.
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Figure 5.6: Continuous verification example (original figure).

to the cumulative penalty in the sliding window, while penalties outside the window are

discarded.

The continuous verification performance is reported as the number of events that can

occur before an impostor is detected. This is determined by adjusting the penalty threshold

so that the genuine user is never locked out of the system. Since the genuine user’s penalty

is always below the threshold, this is the maximum number of events that an impostor can

execute before being rejected by the system, given the genuine user is not rejected.

An example of the penalty function for genuine and impostor users is shown in Figure

5.6. The decision threshold is set to the maximum penalty incurred by the genuine user so

that a false rejection does not occur. The average penalty for impostor users, with 95% CI,

is shown. In this particular example, the impostor penalties exceed the decision threshold

after about 20 keystrokes.

For each sample, the maximum rejection time (MRT) is determined for each impostor.

This procedure is summarized as follows.

1. Determine the maximum penalty threshold such that the genuine user is not rejected.

2. Determine the number of keystrokes it takes each impostor to be rejected.

3. Repeat Steps 1 - 2 to obtain the MRT for each sample.
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The average MRT (AMRT) is the average time it takes an impostor to be rejected. Since

the MRT is obtained for each sample, a bootstrapped confidence interval for the MRT can

be obtained.

5.4 Prediction

Prediction is important when an application requires the estimation of resource consump-

tion, such as mobile call routing, or cost minimization, in the case of terrorist events. Fore-

casting human behavior has countless other applications. The task can be stated as follows.

Given time intervals τN
1 , predict τN+1, or the time of the next event. The symmetric mean

absolute percentage error (SMAPE) is used to evaluate prediction accuracy. Let the predic-

tion for each time interval τn be τ̂n. The SMAPE is given by

SMAPE =
1
N

N

∑
n=1

∣∣∣∣∣
τn− τ̂n

τn + τ̂n

∣∣∣∣∣ . (5.3)

This value ranges between 0 and 1, with 0 indicating a perfect prediction.

There are two scenarios to consider when making predictions using the POHMM. The

future p-states can either be known or unknown. For example, in a sequence of keystrokes

typed freely, the future p-state (i.e. the key that will be pressed) is generally not known. For

a password, or any other fixed text, the future p-states will be known. With known future

p-state, the POHMM can be used to predict the time of the (n+1)th event by determining

the probability of being in each hidden state at time n+1 and the expected time interval in

each state. This is given by

τ̂n+1 =
1

∑
i=0

P(zn+1 = i|τn
1 )E[τn+1|zn+1 = i]

where zn is the state of the system at time n. Using the variables calculated from the forward

procedure, this translates to

τ̂n+1 =
1

∑
i=0

βiE[τn+1|zn+1 = i]
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where βi is the posterior probability of being in state i at time n,

βi =
∑ j αn( j)P(zn+1|zn = j)

∑ j αn( j)

and αn( j) is the probability of time intervals τn
1 and state zn = j at time n. This can be

efficiently computed using the forward procedure.

With unknown future p-state, the expectation of observing each p-state must be ac-

counted for. In this case, the predicted time interval is given by

τ̂n+1 = ∑
ψ∈Ω

1

∑
i=0

P(ωn+1 = ψ|Ωn
1)P(zn+1 = i|τn

1 ,Ω
n
1)E [τn+1|zn+1 = i,Ωn+1 = ψ]

For comparison, a simple baseline predictor is defined as

τ̂n+1|Baseline =
1
n

n

∑
i=1

τi (5.4)

which is the mean time interval up to time n.

5.5 Confidence intervals on evaluation metrics

The evaluation metrics described in this chapter are meant to provide empirical estimates

of model performance in identification and verification scenarios. Experimental results are

obtained by dividing the dataset into reference and query sets, where the reference set with

associated class labels is used to train the models and the query set is used to determine the

evaluation metric. When this process is repeated several times, a confidence interval can

be obtained based on the variation of the metric.

A stratified k-fold cross-validation (SCV) is used to obtain the confidence intervals on

the metrics described. The SCV, depicted in Figure 5.7, splits the dataset up into k different

folds, or subsets. The evaluation metrics are obtained for each fold, using every other fold

as the reference set. The proportion of samples from each class remains the same across
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Figure 5.7: Stratified k-fold cross-validation (original figure).

the folds. This ensures that no single user is over- or under-represented in the reference or

query set..



Chapter 6

Experimental results

In this chapter, experimental results are obtained for each dataset using the evaluation cri-

teria described in Chapter 5. All models are fit using a loglikelihood reduction threshold of

10−6 or maximum of 1000 iterations, whichever is reached first. The time interval emission

parameters, log-mean η and log-standard deviation ρ , are initialized using h = 2, as de-

scribed in Section 4.5.1. This separates the initial log-means by 2 log-standard deviations.

Log-normal distributions are used for time interval and duration features, while all other

features are modeled by normal distributions. Starting probabilities are fixed between the

partially observable states (p-states), a frequency smoothing strategy is used for µ , η , and

transition parameters, and a steady state smoothing strategy is used for σ and η parameters.

Smoothing strategies are described in Section 4.5.3.

The 95% confidence interval (CI) is shown in parentheses next to each evaluation met-

ric. The CI is obtained using the stratified k-fold cross-validation described in Section 5.5

where the number of folds is equal to the number of samples per user in the dataset. This

leaves one sample per user in the query set and k−1 samples per user in the reference set

for parameter estimation. Each dataset contains approximately 50 users, with the excep-

tion of White House visits and terrorist activity. The size and features of each dataset are

described in detail in Chapter 3. Each experiment compares the POHMM to the HMM, in

which event types are not accounted for. For the keystroke datasets, benchmark results are

also obtained by an algorithm with previously published results. The general procedure for

each experiment is shown in Algorithm 6.1.

104
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Algorithm 6.1 Experimental protocol.

1. Preprocess
Extract features from the raw data.

2. Split
Randomly split the data into k stratified folds.

3. Train/test: For each fold,

(a) Train one model per user with k−1 samples.

(b) Test each model using the query samples.

(c) Determine evaluation metrics (ACC, EER, AUC, AMRT).

4. Aggregate
Aggregate the evaluation metrics from the folds to obtain the mean and 95% CI.

6.1 Keystrokes

In a two-state model, in which the user can be in either a passive or active state while

typing, the key names partially reveal the underlying state of the user. The POHMM can

take advantage of this by using the key names as p-states. For example, a typist is more

likely to pause between words, after the space key is pressed, or between sentences, after

the period key is pressed. Therefore, the probability of being in a passive state should be

higher when the space or period keys are press compared to when letter keys are pressed.

There are several ways to define the p-states for keystroke data. For short fixed-text,

a partially observable state can be created for each key on the keyboard and for long text,

the keys can be grouped into several categories. This avoid an unnecessarily large number

of p-states for long text. The two types of partially observable states are summarized as

follows.

Key type Keys are grouped as: left letters, right letters, Space, Shift, Period, Comma, and

other. Left letters include "qwertasdfgzxcvb" and right letters include "yuiophjklnm".

Each key group is a p-state. This strategy is used for free-text.

Key name Each individual key is a p-state. This strategy is used for fixed-text.
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Figure 6.1: Keystroke time interval distribution examples showing the model time interval
distribution in each state and empirical densities of the classified events as determined by
the modified Viterbi algorithm (original figure).

An example, the log-normal time interval distributions of the fitted POHMM are shown

in Figure 6.1 for both fixed-text and free-text keystroke samples. The passive state in the

free-text example has a heavier tail than the fixed-text, while the active state distributions

in both examples are comparable.

The POHMM is fit to each sample in both keystroke datasets and the mean model pa-

rameters are shown in Table 6.1. The mean proportion of events in each state as determined

by the modified Viterbi algorithm is also shown. On average, 60% of keystrokes in fixed

text and 75% of keystrokes in free text are in an active state. In both datasets, left-hand

keys take longer to press and are held down longer than right-hand keys. Longer time in-

tervals for the Shift, Period, and Comma keys are observed in both states. In both states

and both datasets, the duration of the Shift key is about twice as long as other keys since it

is typically used as a modifier (i.e. for upper case letters and special symbols).

6.1.1 Goodness of fit

A Monte Carlo goodness of fit test is performed for time intervals only, as described in Sec-

tion 5.1. The results indicate that the POHMM is more consistent with the data compared

to a HMM, in which key names are ignored. The proportion of samples in each dataset for
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Active (60%)
[Left] [Right] Space Shift Period Comma [Other]

Time interval 133.94 130.65 130.75 143.47 236.13 262.96 208.84
Duration 100.48 90.02 97.51 184.93 91.84 93.69 86.49

Passive (40%)
[Left] [Right] Space Shift Period Comma [Other]

Time interval 287.36 283.28 283.94 347.49 361.67 455.26 537.51
Duration 101.49 88.23 96.54 214.86 93.69 97.51 90.92

(a) Fixed-text

Active (75%)
[Left] [Right] Space Shift Period Comma [Other]

Time interval 151.61 147.25 142.00 182.91 283.96 259.92 186.87
Duration 100.48 90.02 100.48 212.72 85.63 91.84 79.84

Passive (25%)
[Left] [Right] Space Shift Period Comma [Other]

Time interval 329.8 326.11 365.58 690.52 699.45 618.54 604.69
Duration 95.58 88.23 97.51 307.97 83.10 92.76 87.36

(b) Free-text

Table 6.1: Keystroke average estimated emission parameters.
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Figure 6.2: Keystroke time interval empirical and predicted marginal distribution examples
(original figure).

HMM POHMM
Keystroke (fixed) 0.32 0.23
Keystroke (free) 0.98 0.89
Keypad 0.77 0.40
Mobile 0.56 0.13

Table 6.2: Keystroke goodness of fit test results, showing the proportion of users that reject
the null hypothesis that the model is consistent with the data.

which the model is rejected is shown in Table 6.2. The p-value distributions indicate that

the POHMM is better suited for fixed-text, keypad, and mobile input, while both the HMM

and POHMM are largely rejected for long free-text input. The results suggests that typing

behavior is different for long free-text than for long fixed-text. An example of the predicted

and empirical time interval distributions for two randomly selected users is shown in Fig-

ure 6.2. For fixed-text, the model overestimates time intervals in the 50-100 ms range and

underestimates time intervals in the 150-250 ms range. The opposite is true for the free-text

example, where the model overestimates the tail of the distribution.
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Figure 6.3: Keystroke goodness of fit p-value distributions testing the null hypothesis that
the model is consistent with the data. A uniform distribution is given by the dashed black
line (original figure).
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Folds Dichotomy POHMM p-value
Nursery rhymes 4 0.11 (0.04) 0.00 (0.01) 0.003
Keystroke (fixed) 4 0.13 (0.02) 0.08 (0.04) 0.041
Keystroke (free) 6 0.02 (0.01) 0.06 (0.01) 8.9×10−5

Keypad 20 0.11 (0.03) 0.05 (0.02) 1.3×10−8

Mobile (w/o sensors) 20 0.20 (0.03) 0.10 (0.02) 2.7×10−14

Mobile (w/ sensors) 20 0.01 (0.01) 0.01 (0.01) 0.500

Table 6.3: Keystroke benchmark verification results comparing the EER of the POHMM
to the dichotomy classifier (Monaco et al., 2013). Bold EER indicates a significant result
at the 0.05 level.

6.1.2 Identification and verification

A benchmark experiment compares the POHMM to a discriminative model with previously

published results. Verification performance is obtained for the POHMM, as described in

Section 5.3, and the dichotomy classifier with a standard set of keystroke features, as de-

scribed in Monaco et al. (2013). Results are obtained using the same stratified k-fold cross

validation for both classifiers. Standard deviations of the EER are estimated from the per-

formance of each fold, and the number of folds in each dataset is equal to the number of

samples for each user.

The POHMM significantly outperforms the dichotomy model in 4 out of 6 datasets.

These results are consistent with previous work that indicates discriminative models have

better asymptotic performance while generative models perform well with smaller amounts

of data (Jordan, 2002). The dichotomy classifier significantly outperforms the POHMM for

the free-text dataset only. The performance of both classifiers is comparable for the mobile

dataset with all sensors.

Continuous verification results are obtained as described in Section 5.3.1. The penalty

functions for two randomly selected users are shown in Figure 6.4. In both examples,

impostors are detected after about 20 keystrokes. The penalty function for the free-text

example demonstrates behavior seen in a bounded random walk (Nicolau, 2002). Typing

behavior deviates from an expected penalty of approximately 300-500 and is consistently

pulled back into that range.
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Figure 6.4: Keystroke continuous verification examples (original figure).

Figure 6.5 shows the ROC curves obtained for each dataset using the HMM and

POHMM. Table 6.4 summarizes identification and verification performance results for each

keystroke dataset using both the HMM and POHMM. Results for a subset of the fixed-text

keystroke dataset are included here, in which users had to copy a nursery rhyme contain-

ing 100-150 characters. The POHMM outperforms the HMM for most criteria. Continuous

verification results are comparable to those obtained on different keystroke datasets (Bours,

2012). For fixed-text tasks, impostors are locked out of the system after 25 keystrokes on

average. For free-text input, it takes about 4 times as many keystrokes for an intruder to be

detected. On mobile devices an intruder can typically be detected after only 1 keystroke,

which corresponds to 0 lockout time (since the single keystroke results in a penalty score

above the lockout threshold).

6.2 Bitcoin transactions

Bitcoin transactions can either be incoming or outgoing. An incoming transaction is one

in which the user receives bitcoin from another user and an outgoing transaction is one in

which the user sends bitcoin to another user. The direction of the transaction is used as the

partially observable state in the POHMM.

Figure 6.6 shows the fitted marginal time interval distributions in each state for two ran-

domly selected users. In this example, the passive states have a heavier tail than the active
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Figure 6.5: Keystrokes ROC curves comparing the POHMM to the HMM (original figure).
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Model ACC EER AUC AMRT

Nursery rhymes
HMM 0.88 (0.05) 0.03 (0.02) 0.01 (0.00) 34.79 (19.91)
POHMM 0.99 (0.02) 0.00 (0.01) 0.00 (0.00) 25.27 (13.04)

Keystroke (fixed)
HMM 0.56 (0.04) 0.10 (0.03) 0.05 (0.02) 30.41 (14.88)
POHMM 0.75 (0.07) 0.08 (0.04) 0.03 (0.02) 24.55 (13.54)

Keystroke (free)
HMM 0.53 (0.07) 0.13 (0.03) 0.05 (0.02) 162.0 (128.5)
POHMM 0.82 (0.05) 0.06 (0.01) 0.02 (0.01) 103.2 (112.5)

Keypad
HMM 0.58 (0.08) 0.12 (0.02) 0.05 (0.01) 4.24 (1.83)
POHMM 0.77 (0.06) 0.05 (0.02) 0.02 (0.01) 3.21 (1.98)

Mobile (w/o sensors)
HMM 0.42 (0.05) 0.15 (0.02) 0.07 (0.01) 5.23 (2.02)
POHMM 0.59 (0.05) 0.10 (0.02) 0.04 (0.01) 4.16 (2.15)

Mobile (w/ sensors)
HMM 0.93 (0.04) 0.02 (0.01) 0.00 (0.00) 0.16 (0.68)
POHMM 0.94 (0.02) 0.01 (0.01) 0.00 (0.00) 0.15 (0.64)

Table 6.4: Keystroke identification and verification results.

Active (49%) Passive (51%)
In Out In Out

Time interval 1574.02 1784.42 2593.81 2695.49
Minute of hour 28.66 28.64 29.18 28.84
Hour of day 11.63 11.62 11.55 11.59
Day of week 2.98 2.92 2.90 2.87
Bvalue 38.96 -99.94 27.24 -80.75
Num. inputs 0.13 7.27 0.10 6.01
Num. outputs 1.77 0.84 1.70 0.75
Input/output balance 1.64 -6.43 1.60 -5.26

Table 6.5: Bitcoin average estimated emission parameters.

states. The average model parameters from models fit to all Bitcoin samples are shown in

Table 6.5. The incoming transactions have shorter time intervals than outgoing transactions

in both states. In the active state, higher bitcoin values are sent and received compared to

the passive state. The transactions in the active state also have more connections on aver-

age.



CHAPTER 6. EXPERIMENTAL RESULTS 114

0 7500 15000 22500 30000
τ

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035
D

en
si

ty

Active state

Passive state

(a) User A

0 7500 15000 22500 30000
τ

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

D
en

si
ty

Active state

Passive state

(b) User B

Figure 6.6: Bitcoin time interval distribution examples showing the model time interval
distribution in each state and empirical densities of the classified events as determined by
the modified Viterbi algorithm (original figure).

6.2.1 Goodness of fit

In a Monte Carlo goodness of fit test, the POHMM is rejected for 69% of samples and

the HMM for 67% of samples. This indicates that the POHMM and HMM are roughly

equivalent in terms of explaining the data. Examples of the predicted and empirical CDF

are shown in Figure 6.7. In the example, the tail distribution of time intervals for User

A is underestimated. The circadian and weekly rhythms are apparent in the empirical

distribution of User B. The p-value distributions of the HMM and POHMM are shown in

Figure 6.8.

6.2.2 Identification and verification

Verification results are obtained for the POHMM using three feature groups: time intervals

only, timing features, and all features. The timing features consist of time intervals, minute

of hour, hour of day, and day of week. The ROC curves for the three feature groups are

shown in Figure 6.9. The timing features perform worse than time intervals only, and using

all features improves performance.

Identification and verification results for the HMM and POHMM using the three feature

groups are summarized in Table 6.6. The POHMM consistently outperforms the HMM. On
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Figure 6.7: Bitcoin time interval empirical and predicted marginal distribution examples
(original figure).
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Figure 6.8: Bitcoin goodness of fit p-value distributions testing the null hypothesis that the
model is consistent with the data. A uniform distribution is given by the dashed black line
(original figure).
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Figure 6.9: Bitcoin ROC curves comparing features three feature groups (original figure).

Features Model ACC EER AUC AMRT

Time interval
HMM 0.26 (0.04) 0.21 (0.02) 0.13 (0.01) 225.02 (217.91)
POHMM 0.36 (0.04) 0.17 (0.02) 0.09 (0.01) 201.04 (194.56)

All timing
HMM 0.16 (0.07) 0.32 (0.02) 0.23 (0.01) 232.06 (211.59)
POHMM 0.18 (0.07) 0.27 (0.02) 0.18 (0.01) 203.60 (178.74)

All
HMM 0.32 (0.04) 0.22 (0.01) 0.12 (0.00) 163.00 (221.83)
POHMM 0.42 (0.06) 0.14 (0.03) 0.07 (0.02) 138.85 (214.03)

Table 6.6: Bitcoin identification and verification results.

average, impostors are detected after 140 transactions using the POHMM with all features.

The timing features generally perform worse than time intervals alone, an indication that

minute of hour, hour of day, and day of week are poor indications of Bitcoin transaction

behavior.

6.3 Linux kernel commits

The p-states for Linux kernel commits are defined as follows. Commits that contain at least

one of the words {"bug", "patch", "error", "fix"} in the description are labeled as bug fixes,
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Figure 6.10: Linux kernel commit time interval distribution examples showing the model
time interval distribution in each state and empirical densities of the classified events as
determined the modified Viterbi algorithm (original figure).

and commits that do not contain any of those words are labeled as feature additions. The

type of commit, either bug fix or feature addition, is used as the p-state.

Figure 6.10 shows the fitted time interval distributions for two randomly selected users.

Both examples show a clear separation between active and passive states. The average

model parameters for all samples are shown in Table 6.7. In both states, bug fixes have

slightly longer time intervals than feature additions. This indicates that features additions

are generally authored quicker than bug fixes. However, the bug fixes have a lower time to

commit in both states, indicating that the integrations of bug fixes have higher priority than

new features. Descriptions also tend to be longer in the active state, and shorter for feature

additions in both states.

6.3.1 Goodness of fit

In a Monte Carlo goodness of fit test using time intervals only, the HMM is rejected for 98%

of samples and POHMM for 85% of samples. This indicates that neither model adequately

explains the data, and that the POHMM provides a better fit than the HMM. An example

of the empirical and predicted distributions for two randomly selected users is shown in

Figure 6.11.
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Active (47%) Passive (53%)
Bug fix Feature Bug fix Feature

Time interval 2.06 1.90 4.30 4.09
Day of week 2.46 2.49 2.32 2.37
Week of month 1.85 1.77 1.81 1.83
Time to commit 14.98 21.28 13.81 20.73
Num. edits 4.65 2.99 4.45 2.44
Num. committers 1.39 1.22 1.27 1.13
Description chars 2017.57 909.75 1697.27 764.52
Description words 133.40 64.09 116.81 59.79

Table 6.7: Linux kernel commit average estimated emission parameters.
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Figure 6.11: Linux kernel commit time interval empirical and predicted marginal distribu-
tion examples (original figure).
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Figure 6.12: Linux kernel commit goodness of fit p-value distributions testing the null
hypothesis that the model is consistent with the data. A uniform distribution is given by the
dashed black line (original figure).

6.3.2 Identification and verification

The ROC curves for three features groups are shown in Figure 6.12. Similar to Bitcoin, the

time intervals alone perform better than timing features and the best results are obtained

using all features. Verification and identification results are summarized in Table 6.8, where

the HMM and POHMM performance is roughly equivalent.

Features Model ACC EER AUC AMRT

Time interval
HMM 0.04 (0.03) 0.39 (0.02) 0.34 (0.03) 44.02 (17.23)
POHMM 0.03 (0.01) 0.41 (0.02) 0.36 (0.02) 44.84 (17.43)

All timing
HMM 0.06 (0.02) 0.44 (0.02) 0.38 (0.03) 41.23 (23.06)
POHMM 0.06 (0.02) 0.43 (0.02) 0.39 (0.02) 40.14 (22.43)

All
HMM 0.20 (0.08) 0.34 (0.03) 0.29 (0.02) 40.37 (32.71)
POHMM 0.17 (0.06) 0.36 (0.01) 0.30 (0.01) 40.81 (31.45)

Table 6.8: Linux kernel commit identification and verification results.
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Figure 6.13: Linux kernel commit ROC curves comparing features three feature groups
(original figure).

6.4 White House visits

The group size is used as the p-state for White House visits. Visits with greater than 10

people are labeled as large groups and 10 people or less are labeled as small groups. The

time interval distributions and fitted models for two randomly selected users are shown in

Figure 6.14. In both examples, the passive state has a heavier tail than the active state.

The average estimated model parameters over all samples are shown in Table 6.9. In

both the active and passive states, large groups tend to have longer time intervals and are

scheduled earlier in the day. Small groups tend to arrive earlier in both states. The ap-

pointments made for large groups in the passive state are usually farther in advance than

the active state, shown by the larger mean forecast parameter.

6.4.1 Goodness of fit

Two examples of the predicted and empirical time interval distributions are shown in Fig-

ure 6.15 and results of a Monte Carlo goodness of fit test in Figure 6.16. The examples

demonstrate the predicted distributions visually agree with the empirical distributions with
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Figure 6.14: White House visit time interval distribution examples showing the model
time interval distribution in each state and empirical densities of the classified events as
determined the modified Viterbi algorithm (original figure).

Active (49%) Passive (51%)
Small Large Small Large

Time interval 3058.90 3962.98 13389.47 14216.55
Hour of day 12.42 11.69 12.38 11.47
Day of week 2.19 2.36 1.91 2.14
Week of month 1.71 1.79 1.82 1.79
Duration 102.93 126.22 115.27 112.29
Tardiness -5.09 -3.81 -6.47 -3.58
Forecast 5013.59 4072.79 5110.75 8430.40
Num. people 6.67 39.41 6.69 40.07

Table 6.9: White House visit average estimated emission parameters.
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Figure 6.15: White House visit time interval empirical and predicted marginal distribution
examples (original figure).

apparent circadian and weekly rhythms. The p-value distributions indicate the POHMM is

consistent with the data, with a 0% rejection rate, compared to the HMM, which has a 6%

rejection rate.

6.4.2 Identification and verification

Verification results are summarized in Figure 6.17, which shows the ROC curves obtained

using the POHMM with three different feature groups. Unlike Bitcoin and kernel commits,

the inclusion of all timing features yield better verification performance than time intervals

alone. Identification and verification results are summarized in Table 6.10. The POHMM

generally performs better than the HMM. Using all features, an impostor is detected after

18 visits on average.
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Figure 6.16: White House visit goodness of fit p-value distributions testing the null hy-
pothesis that the model is consistent with the data. A uniform distribution is given by the
dashed black line (original figure).
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Figure 6.17: White House visit ROC curves comparing features three feature groups (orig-
inal figure).
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Features Model ACC EER AUC AMRT

Time interval
HMM 0.08 (0.07) 0.41 (0.05) 0.40 (0.06) 26.32 (7.67)
POHMM 0.14 (0.11) 0.42 (0.07) 0.36 (0.09) 25.25 (7.84)

All timing
HMM 0.28 (0.08) 0.32 (0.05) 0.26 (0.02) 21.34 (11.31)
POHMM 0.32 (0.05) 0.31 (0.05) 0.22 (0.04) 21.06 (9.76)

All
HMM 0.40 (0.13) 0.27 (0.02) 0.18 (0.02) 18.11 (9.95)
POHMM 0.31 (0.13) 0.28 (0.05) 0.20 (0.05) 18.59 (10.43)

Table 6.10: White House visit identification and verification results.

Criterion Description

P Political, economic, religious, or social motivations
I Intent to coerce or intimidate a large audience
A Actions that violate international humanitarian law

Table 6.11: GTD event criteria.

6.5 Terrorist activity

Terrorist events in the GTD are labeled according to 3 different criteria, summarized in

Table 6.11. Each event must satisfy at least 2 out of the 3 criteria, therefore there are 4

different possible combinations of criteria for each event. The combination of criteria (PI,

PA, IA, or PIA) is used as the p-state in the POHMM.

The time interval distributions and fitted models for two randomly selected groups are

shown in Figure 6.18. There is a clear separation between the active and passive states,

demonstrated by the heavy tail for passive states. The average model parameters from all

samples are shown in Table 6.12. In both the active and passive states, events that intend

to intimidate (I criterion) and violate humanitarian law (A criterion) generally have shorter

time intervals, and in the active state, the IA events involve more perpetrators.

6.5.1 Goodness of fit

A Monte Carlo goodness of fit test demonstrates both the HMM and POHMM are con-

sistent with the data, shown by the p-value distributions in Figure 6.20. An example of

the predicted and empirical time interval distributions for two randomly selected groups is

shown in Figure 6.19.
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Figure 6.18: Terrorist activity time interval distribution examples showing the model time
interval distribution in each state and empirical densities of the classified events as deter-
mined by the modified Viterbi algorithm (original figure).

Active (54%) Passive (46%)
IA PA PI PIA IA PA PI PIA

Time interval 2.95 13.37 8.12 9.67 2.49 16.83 45.72 65.27
Day of week 3.08 2.66 2.83 2.99 0.82 1.71 3.12 2.95
Week of month 1.42 1.39 1.34 1.68 0.49 0.97 1.79 1.64
Month of year 6.69 5.56 5.76 5.93 2.75 5.21 5.39 6.63
Num. perpetrators 4.06 2.09 1.52 2.66 1.33 1.15 1.19 1.89
Num. killed 3.87 2.03 1.56 1.92 0.15 1.97 4.48 2.84
Num. captured 0.00 0.66 0.02 0.09 0.46 1.54 0.17 0.32
Num. related events 0.95 0.53 0.86 0.93 6.18 1.12 0.17 1.08

Table 6.12: Terrorist activity average estimated emission parameters.
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Figure 6.19: Terrorist activity time interval empirical and predicted marginal distribution
examples (original figure).
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Figure 6.20: Terrorist activity goodness of fit p-value distributions testing the null hypothe-
sis that the model is consistent with the data. A uniform distribution is given by the dashed
black line (original figure).
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Figure 6.21: Terrorist activity ROC curves comparing features three feature groups (origi-
nal figure).

Features Model ACC EER AUC AMRT

Time interval
HMM 0.19 (0.10) 0.47 (0.07) 0.45 (0.02) 25.75 (26.22)
POHMM 0.15 (0.05) 0.42 (0.11) 0.41 (0.01) 25.36 (26.08)

All timing
HMM 0.19 (0.10) 0.45 (0.05) 0.41 (0.03) 22.41 (17.11)
POHMM 0.20 (0.01) 0.46 (0.05) 0.40 (0.03) 23.05 (18.78)

All
HMM 0.17 (0.06) 0.42 (0.04) 0.42 (0.01) 33.59 (67.75)
POHMM 0.15 (0.05) 0.45 (0.07) 0.43 (0.05) 33.65 (67.30)

Table 6.13: Terrorist activity identification and verification results.

6.5.2 Identification and verification

Verification results are obtained using the three feature groups and summarized in Figure

6.21. The ROC curves indicate that no feature group outperforms any other. This is also

confirmed in the summary of identification and verification results in Table 6.13. Perfor-

mance in roughly equivalent for the HMM and POHMM using any of the three feature

groups.
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Absolute clock Relative clock
Baseline POHMM Baseline POHMM

Keystroke (fixed) 0.26 0.26 0.35 0.32
Keystroke (free) 0.32 0.29 0.33 0.30
Bitcoin 0.44 0.44 0.45 0.44
Commits 0.44 0.42 0.37 0.36
Visits 0.43 0.42 0.34 0.34
Terror 0.62 0.56 0.40 0.35

Table 6.14: Time interval prediction results using an absolute and relative clock.

6.6 Prediction

The fitted POHMM is used to make time interval predictions for each dataset, as described

in Section 5.4. Baseline predictions are also obtained using the sample mean. Predictions

are made by iteratively training the model on N events and predicting the time to the next

event. This is performed using both an absolute and relative clock. With a relative clock,

time passes as the number of global events1.

Examples of the SMAPE for a randomly selected user in each dataset is shown in Figure

6.22. In the examples, the POHMM is at least as powerful as the baseline in making predic-

tions. The average SMAPE results are shown in Table 6.14. The greatest improvement over

baseline accuracy is obtained for the terrorist activity dataset, where the POHMM provides

a 10% improvement over baseline.

6.7 Summary

Identification and verification results for all datasets are summarized in Table 6.15. The

POHMM outperforms the HMM for most datasets, particularly for higher-frequency events

including keystroke and Bitcoin transactions. Performance generally increases when all

available features are utilized.

1Since time as measured by a relative clock is given by the event count, time interval predictions take on
a different meaning. In predicting the time to the next event, the relative clock time prediction indicates the
number of global events that are expected to occur before the next event.
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Figure 6.22: Time interval SMAPE examples for a randomly selected user from each
dataset (original figure).
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Model ACC EER AUC AMRT

Keyst. (fixed)
HMM 0.35 (0.04) 0.15 (0.02) 0.08 (0.02) 45.06 (17.83)
POHMM 0.59 (0.10) 0.09 (0.02) 0.04 (0.02) 36.91 (16.55)

Keyst. (free)
HMM 0.59 (0.07) 0.09 (0.01) 0.04 (0.02) 267.19 (168.61)
POHMM 0.85 (0.03) 0.05 (0.02) 0.02 (0.02) 201.70 (162.39)

Bitcoin
HMM 0.26 (0.04) 0.21 (0.02) 0.13 (0.01) 225.02 (217.91)
POHMM 0.36 (0.04) 0.17 (0.02) 0.09 (0.01) 201.04 (194.56)

Commits
HMM 0.04 (0.03) 0.39 (0.02) 0.34 (0.03) 44.02 (17.23)
POHMM 0.03 (0.01) 0.41 (0.02) 0.36 (0.02) 44.84 (17.43)

Visits
HMM 0.08 (0.07) 0.41 (0.05) 0.40 (0.06) 26.32 (7.67)
POHMM 0.14 (0.11) 0.42 (0.07) 0.36 (0.09) 25.25 (7.84)

Terror
HMM 0.19 (0.10) 0.47 (0.07) 0.45 (0.02) 25.75 (26.22)
POHMM 0.15 (0.05) 0.42 (0.11) 0.41 (0.01) 25.36 (26.08)

(a) Time intervals only.

Model ACC EER AUC AMRT

Keyst. (fixed)
HMM 0.56 (0.04) 0.10 (0.03) 0.05 (0.02) 30.41 (14.88)
POHMM 0.75 (0.07) 0.08 (0.04) 0.03 (0.02) 24.55 (13.54)

Keyst. (free)
HMM 0.53 (0.07) 0.13 (0.03) 0.05 (0.02) 162.03 (128.52)
POHMM 0.82 (0.05) 0.06 (0.01) 0.02 (0.01) 103.25 (112.53)

Bitcoin
HMM 0.32 (0.04) 0.22 (0.01) 0.12 (0.00) 163.00 (221.83)
POHMM 0.42 (0.06) 0.14 (0.03) 0.07 (0.02) 138.85 (214.03)

Commits
HMM 0.20 (0.08) 0.34 (0.03) 0.29 (0.02) 40.37 (32.71)
POHMM 0.17 (0.06) 0.36 (0.01) 0.30 (0.01) 40.81 (31.45)

Visits
HMM 0.40 (0.13) 0.27 (0.02) 0.18 (0.02) 18.11 (9.95)
POHMM 0.31 (0.13) 0.28 (0.05) 0.20 (0.05) 18.59 (10.43)

Terror
HMM 0.17 (0.06) 0.42 (0.04) 0.42 (0.01) 33.59 (67.75)
POHMM 0.15 (0.05) 0.45 (0.07) 0.43 (0.05) 33.65 (67.30)

(b) All features.

Table 6.15: Identification and verification results summary.



Chapter 7

Privacy issues

The issue of privacy in behavioral monitoring has recently started to gain attention. It is

not clear how many organizations routinely track user behavior and to what extent this in-

formation is being used. On the web, the situation is further complicated by the prevalence

of third-party content which allows identifying attributes to be seen by a number of web-

sites as a result of a user visiting only a single page (Mayer and Mitchell, 2012). Behavior

tracking is motivated by targeted advertising, analytics, and law enforcement agencies. The

laws and regulations currently surrounding behavior tracking are relatively lax, although a

majority of users negatively view behavioral targeting. In 2012, a study by Pew Research

Group found 68% of respondents to be “not okay” with behavioral targeted advertising, and

a 2010 USA Today/Gallup poll showed 67% of respondents felt that behavioral targeting

should not be legal (Center, 2012; Gallup, 2010).

Behavioral patterns and identity may be unintentionally leaked through event times-

tamps alone, as demonstrated in Chapter 6. The simplicity and ubiquitous nature of times-

tamped events makes this attractive as a biometric modality. It is not difficult to capture the

key-press times from an interactive applicative over a network or the financial transaction

times from a peer-to-peer digital currency. Masking spatial information, e.g. through TOR

(Tor, 2015), does not guarantee anonymity when temporal behavior can be used for identi-

fication. Over time, a temporal behavior profile can be established to identify and predict

the behavior of a user. This chapter introduces some techniques that can be used to prevent

identification and prediction based on event timestamps.

131
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7.1 Masking temporal behavior

There are primarily two goals in masking temporal behavior. The first is to limit an adver-

sary’s capability to identify. Under this goal, the user wishes to remain anonymous within

a pool of U users. Anonymity is achieved when the probability of correctly identifying the

user is no greater than 1
U . With cooperation from all the users in the pool, it is relatively

easy to obtain perfect anonymity for every user. Each user needs only to behave in some

predefined way agreed upon by the pool. If the behavior of every user is exactly the same,

the best strategy for identification is simply a random guess out of the U users.

The second goal is to limit an adversary’s capability to predict behavior. This goal is

quite different, in that the user wishes for the time of a future event to be unpredictable

after having generated N events. Perfect unpredictability is achieved when the expected

SMAPE of the time to the next event goes to 1. The SMAPE can go to 1 when either

the actual time interval, τN+1, or predicted time interval, τ̂N+1, is infinite. The actual time

interval is infinite when the user plans on waiting indefinitely before generating another

event. The predicted time interval is infinite if the adversary’s model predicts an infinite

estimated delay until the next event. Neither of these situations are practical and thus per-

fect unpredictability can generally not be achieved. Despite this, even a moderate increase

in the SMAPE can be effective in practice.

Both goals in masking temporal behavior call for different masking strategies. Consider

two extreme strategies. In the first, every user decides to generate events with exactly the

same frequency. That is, the time between events, τ , is the same for every user. Using this

strategy, perfect anonymity is achieved. However, each user’s actions can also be predicted

exactly and the masking strategy fails to address the predictability criterion. Consider a

different strategy, in which each user generates events according to a Poisson process. Let

the users have rates λ1� ··· � λU . On a per-user basis, predictive accuracy is relatively

low, as the time intervals are independent and identically distributed, following an expo-

nential distribution. However, users can be easily identified over time by their expected

time interval, or event frequency.

A more effective strategy would be to let each user generate events according to a Pois-

son process with rate λ . With cooperation from every user, perfect anonymity is achieved
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Figure 7.1: Chaum mix (original figure).

as the Poisson process is memoryless and the resulting distributions of time intervals from

each user will appear to be the same. Unfortunately, this strategy is generally not practical

since it requires the cooperation from every user. Some users who naturally generate events

at a rate much lower than λ would be forced to increase their speed. Conversely, users who

naturally generate events at a rate much higher than λ would be forced to slow down.

Chaum mixes can be used to provide anonymity to users behind a router, in which

cooperation is assumed (Chaum, 1981). This scenario is shown in Figure 7.1, where users

Alice and Bob are behind a router and wish to transmit a series of packets. The mix reorders

the packets by introducing a random delay to each packet. An eavesdropper, Eve, observes

the sequence of reordered packets, however cannot discern whether any packet came from

Alice or Bob. The identity and temporal behavior of Alice and Bob are protected by the

mix.

The anonymity of the mixing strategy is given by the expected entropy of the observed

packets,

A = lim
N→∞

1
N
E [H (U1, . . . ,UN)]

where Un is the identity of the nth observed packet and H is the entropy function. Without

any constraints, the optimal strategy that maximizes anonymity can be shown to require

an infinite delay (Mishra and Venkitasubramaniam, 2011). This is due to the mix wait-

ing for all packets from both Alice and Bob and then randomly selecting one of the
(2N

N

)
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permutations for the packet reordering. This strategy is not practical for a number of rea-

sons, one being that it would require an infinite buffer size.With a finite buffer size, the

upper bound on the maximum-achievable anonymity decreases. Despite this, a reasonable

level of anonymity can be achieved with practical constraints (Venkitasubramaniam and

Anantharam, 2008).

Time interval mix

Since the Chaum mix requires the cooperation of all the users, i.e. every user must be

on the same network, it is a global mixing strategy, or global mix. If the assumption of

cooperation is relaxed, then a mixing strategy without cooperation must be developed.

This type of mixing strategy is a user mix. A user mix is appropriate when there is no

cooperation between users, or the events from different users are separated by both space

and time1.

Instead of a global mix, the events from each user pass through a user mix, which

operates exclusively on the events from that user. The mix for each user is atomic, in

the sense that it operates independently of every other user. There can be different mixing

strategies employed by different users and some users with no mix at all. The mix separates

the generating process (the sequence of events from the perspective of the user) from the

arrival process (the sequence of events as seen by the application). The goal of the mix is

to provide anonymity and unpredictability at the arrival process.

This scenario is depicted in Figure 7.2, where Alice and Bob both generate events and

wish to remain anonymous and unpredictable. An eavesdropper, Eve, is able to observe the

sequence of events from each user after passing through the mix and knows that there are

two users in the system. From the perspective of Eve, it is not clear which sequence belongs

to each user, as she can only observe the arrival processes. The technical conditions of the

user mix are summarized as follows.

1. Alice and Bob have zero knowledge of each other’s behavior and don’t cooperate.

1For example, consider keystrokes recorded by a web application. The keystrokes from two different
sessions have been recorded days apart and come from entirely different network locations.
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Figure 7.2: Time interval mix scenario (original figure).

2. Eve can see multiple arrival processes, but cannot discern which process belongs to

each user

3. Each mix has a source of randomness unknown to Eve.

4. Event order is preserved by the mix.

A time interval mix is a type of user mix that sits between the user and application with

the purpose of introducing noise to the time intervals. The mix delays events by temporarily

storing them in a buffer before releasing them to the application. It is necessary that the

order of events is preserved, and the only action that can be performed is to delay an event.

There are a few caveats in masking temporal behavior. Since the only action is to delay,

a lag is introduced between the generation of an event by the user and the observation of

the event in the application. Thus, it may not be possible to use a mix in some real-time

systems. For many human-computer interaction applications, a small lag is acceptable and

would not be noticed by the user. As the lag increases, the movement time and error rate

on behalf of the user also increase (MacKenzie and Ware, 1993).

A user mix should possess several properties, summarized in Table 7.1. The expected

lag between the generated events and observed events should be finite. The size of the

event buffer ultimately determines how large the lag can grow to. If the tolerated lag is

unbounded, then the number of events that need to be stored will eventually exceed the

size of the buffer. A user mix should also protect the user from being identified out of
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Finite The expected delay between the user and the arrival process should
not grow unbounded.

Anonymous The mix should make it difficult to identify the user.
Unpredictable The mix should make it difficult to predict future behavior.

Table 7.1: Time interval mix properties.
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Figure 7.3: Time interval mix example (original figure).

a population of users. This condition is more difficult to satisfy, as it requires at least

some global knowledge of other users in the system. A mix that provides anonymity will

emulate the temporal behavior of the “typical” user. Finally, a mix should make it difficult

to reproduce and predict the temporal behavior of a user.

There is a direct tradeoff between time lag and the masking capability of the mix. As

the lag decreases, the dependence between the arrival process and the generating process

increase. As the lag increases, the potential to reduce dependence increases. It is desirable

to have a mix that maximally reduces the dependence between the generating process and

the arrival process for a given lag.

Let t◦n and τ◦n be the true time and time interval of the nth event generated by the user, and

tn and τn be the observed time and time interval of the nth event after passing through the

mix. The sequence of tn, or alternatively τn, constitute the arrival process. The lag, or delay,

between the generated event and observed event is given by δn. Since event order must be

preserved by the mix, it is necessary that tn−1 +δn−1 < tn +δn. Figure 7.3 summarizes the

variables of the time interval mix.

Predictability can be measured by the dependence between τ◦ and τ . Anonymity is

given by the dependence between τA and τB from two random instantiations of the mix,
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A and B. Dependence is measured by the mutual information between two continuous

random variables, given by

MI (X ,Y ) =
∫

Y

∫

X
f (x,y) log

[
f (x,y)

f (x) f (y)

]
dxdy

where f (x,y) is the joint probability density function of x and y. For empirical data, the

mutual information can be estimated using a Gaussian kernel density estimator (Moon

et al., 1995).

A mix with that provides perfect unpredictability has MI (τ◦,τ) = 0. Perfect anonymity

is achieved when MI
(
τA,τB)= 0. Both can be achieved with an unlimited buffer size and

delay. To see this, consider a mix that samples τ from a uniform distribution, i.e. τ ∼
U (0,k). Let τn be the time interval of the arrival process. If τ◦n+1 < τn, then the lag be-

tween the user and the arrival process must increase by at least τn−τ◦n+1 and as n→∞, the

lag increases unbounded. In this case, MI (τ◦,τ) = 0 since f (τ◦,τ) = f (τ◦) f (τ), i.e. the

observed time intervals are independent from the actual time intervals. If τ◦n+1 > τn, then the

time interval on the arrival process is no longer independent from the actual time intervals

since τn+1 > τ◦n+1− τn. The next sample will have τn+1 ∼ U
(
τ◦n+1− τn,τ

◦
n+1− τn +1

)
,

or alternatively P(τn+1 = s) = 1
k , τ − τn < s < τ◦n+1− τn + k. Consequently, the depen-

dence guarantees that f (τ◦,τ) > f (τ◦) f (τ) and MI (τ◦,τ) > 0. Therefore, in practice it

is necessary to introduce a lag constraint in minimizing the dependence between τ◦ and τ .

There are primarily two ways a time interval mix can add noise to the time intervals of

the arrival process. Let δ be the lag between τ◦ and τ . The first is by generating a random

delay between the actual events that occur at time t◦ resulting in the time t◦+ δ at the

arrival process. This type of mix is a delay mix. The second way is to generate τ directly,

referred to as an interval mix.

7.2 Delay mix

The delay mix adds noise to the time intervals of the arrival process by randomly delaying

each event. For the nth event at time t◦n , the delay mix generates a random delay δn to

produce the event time at the arrival process, tn = t◦n + δn. Time intervals of the arrival
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process are given by τn = (t◦n +δn)−
(
t◦n−1 +δn+1

)
. A uniform distribution can be used

to generate delays. Let δn ∼ U (max(δn−1− τ◦n ,0) ,∆), where ∆ is the upper bound on

the delay. The lower bound of max(δn−1− τ◦n ,0) is needed to ensure the event order is

preserved. Without this constraint, events will become permuted if τ◦n + δn < δn−1. The

process is summarized in Algorithm 7.1.

Algorithm 7.1 Delay mix.

1. Initialize
Let τ◦0 = ∞ and t◦0 = 0

2. Generate
Let ln = max(δn−1− τ◦n ,0) be the lower bound of the nth delay and δn ∼U (l,∆) be
a random delay. The event time on the arrival process is given by tn = t◦n +δn

The expected delay is bounded above by ∆. To see this, consider the two scenarios:

τ◦n < δn−1 and τ◦n > δn−1. If τ◦n < δi−1, then the expected lag is simply E [δn] =
∆

2 since

the lower bound will always be 0. If τ◦n > δn−1, then E [δi] =
∆+δn−1−τ◦n

2 which is bounded

above by ∆. Given τ0 = ∞, it is true that 0 < δ1 < ∆. By induction, it is also true that

δn−1 < ∆ since τ◦n > 0 .

7.2.1 Example

As an example, consider events occurring at times t◦ = [0,5,7,11,14] passing through a

delay mix with ∆ = 7. The actual time intervals are τ◦ = [∞,5,2,4,3]. The trace of each

variable is shown in Table 7.2.

7.2.2 Experimental results

The effect of the delay mix can be evaluated empirically. Using each dataset, performance

results are obtained before and after applying the delay mix. The relative change in iden-

tification accuracy, verification EER and AUC, and SMAPE are obtained for increasing

values of ∆. The mean lag, δ̄ , and loglikelihood ratio of the model trained on data after

passing through the delay mix to the model trained on the original data, lr, are obtained.

Table 7.3 contains the performance results of all datasets for various values of ∆.
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Event t◦ τ◦ l δ t τ

0 0 ∞ 0 3 3 ∞

1 5 5 0 6 11 8
2 7 2 4 5 12 1
3 11 4 1 5 16 4
4 14 3 6 6 20 4

Table 7.2: Delay mix example where t◦ and τ◦ are the actual time and time interval of the
nth event, l is the lower bound of the delay, δ is the random delay, and t and τ are the time
and time interval of the arrival process.
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Figure 7.4: KeyboardPrivacy browser extension (original figure).

7.2.3 Case study

The KeyboardPrivacy plugin was developed to resist identification via typing behavior.

The source code is publicly available, and the strategy employed, shown in Figure 7.4, is

a variation of the delay mix (Moore, 2015). The delay mechanism introduces an artificial

lag into the time intervals between key-press and key-release events. With probability

p, an artificial lag δd ∼ U (0,∆d) is added to the dwell time and δ f ∼ U
(
0,∆ f

)
flight,

respectively. The ∆ parameters determine the distribution from which the artificial lags are

sampled. This has the effect of masking the true temporal behavior. One problem with the

KeyboardPrivacy mix is that the resulting lags can become unbounded. This happens when

the event rate exceeds the artificial lags.
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∆ δ̄ lr ACC EER AUC AMRT SMAPE
K

ey
st

.(
fix

ed
) 50 ms 25.22 -13.30 0.94 1.30 1.32 1.04 1.03

100 ms 50.73 -38.75 0.73 1.49 1.74 1.13 1.11
200 ms 106.32 -67.38 0.51 1.68 2.30 1.24 1.26
500 ms 326.27 -84.69 0.30 2.39 3.88 1.35 1.44

1 second 775.16 -90.84 0.19 2.82 4.96 1.46 1.48

K
ey

st
.(

fr
ee

) 50 ms 25.08 -107.49 0.95 1.20 1.15 1.09 1.03
100 ms 50.49 -307.51 0.83 1.42 1.55 1.21 1.10
200 ms 105.64 -539.39 0.68 2.29 2.62 1.35 1.25
500 ms 324.72 -669.75 0.52 2.58 3.41 1.55 1.39

1 second 775.85 -702.42 0.43 2.89 4.27 1.58 1.42

B
itc

oi
n

1 hour 2159.22 -37.19 0.84 1.12 1.30 1.07 1.02
12 hours 37536.81 -74.18 0.65 1.24 1.55 1.08 1.03

1 day 79598.00 -84.47 0.64 1.22 1.55 1.08 1.05
7 days 595039.10 -124.32 0.62 1.28 1.62 1.07 1.16
30 days 2574777.17 -164.41 0.57 1.33 1.65 1.08 1.27

C
om

m
its

1 day 0.50 -154.58 2.00 0.95 0.94 1.01 1.02
3 days 1.66 -207.03 1.00 0.92 0.98 1.00 1.07
7 day 4.47 -211.62 1.83 0.98 1.00 1.02 1.09

14 days 10.25 -215.47 1.00 1.02 1.03 1.02 1.09
30 days 25.01 -223.62 1.17 0.97 1.07 1.03 1.09

V
is

its

1 hour 30.32 -0.34 0.70 1.00 1.02 0.99 1.00
12 hours 367.95 -3.94 0.90 0.96 1.00 1.01 1.00

1 day 741.44 -4.45 0.90 0.95 0.99 1.00 0.99
7 days 5810.91 -10.21 0.80 0.91 0.96 1.01 1.01
30 days 31791.11 -17.84 0.70 0.95 1.02 1.03 1.04

Te
rr

or

1 day 0.52 -19.47 1.44 1.00 0.92 1.07 1.01
3 days 1.60 -39.02 1.44 1.05 0.97 1.05 1.03
7 days 3.92 -39.37 1.66 1.06 0.97 1.10 1.03
30 days 18.94 -44.53 1.10 1.04 1.06 1.03 1.01
90 days 63.49 -54.22 0.89 0.94 1.01 0.98 1.00

Table 7.3: Delay mix performance results.
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7.3 Interval mix

Instead of generating delays, the time intervals of the arrival process can be modeled ex-

plicitly. The goal of the mix is to minimize the dependence between τ◦ and τ , and this

strategy will give the mix greater control over the resulting time intervals. While the delay

mix generates δn at each time step to produce arrival process time tn = t◦n +δn, the interval

mix generates τn to produce tn = tn−1 + τn. With an infinite delay, this allows the τn to be

generated independently of τ◦n . With a finite delay, the τn are constrained by the event rate

of the user.

At each time step tn, let the desired time interval be τ̇n ∼ U (0,un−1) where un−1

is an upper bound parameter. If tn−1 + τ̇n > t◦n , then the nth event is delayed by

δn = tn−1 + τ̇n − t◦n to get the arrival process time tn = tn−1 + τ̇n. If tn−1 + τ̇n ≤ t◦n ,

then δn = 0 and the event is released immediately. The upper bound u is updated as

un = max{un−1 +b [tn− (tn−1 + τ̇n)] ,ε}, where b is a parameter that controls the rate at

which un can change. This update moves the expected time interval in the direction of the

rate of the user. This process is summarized in Algorithm 7.2.

Algorithm 7.2 Interval mix.

1. Initialize
Let t◦0 = t0 = 0, τ◦0 = τ0 = ∞, and u1 > 0.

2. Generate
Let τ̇n ∼U (0,un) be the desired time interval and ṫn = tn−1 + τ̇n be the desired time
of the arrival process. The arrival process time is given by tn = max(ṫn, t◦n).

3. Update
Let un+1 = max [un +b(t◦n − ṫn) ,ε]

7.3.1 Example

An example is used to demonstrate the interval mix with parameter b= 1. Similar as before,

the actual event times are given by t◦= [0,5,7,11,14] with time intervals τ◦= [∞,5,2,4,3].

At the first event, there is no delay between the actual event time and the arrival process,
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Event t◦ τ◦ u ṫ τ̇ δ t τ

0 0 ∞ - - - 0 0 ∞

1 5 5 7 3 3 0 5 5
2 7 2 9 11 6 4 11 6
3 11 4 5 15 4 4 15 4
4 14 3 1 16 1 2 16 1

Table 7.4: Interval mix example where t◦is the actual event time, τ◦ is the actual time
interval, u is the interval distribution parameter, ṫ is the desired event time, t is the arrival
process event time, and τ is the arrival process time interval.

therefore t0 = t◦0 = 0. The parameter updates and time intervals of the arrival process are

shown in Table 7.4. For simplicity, values are sampled from a discrete uniform distribution.

The starting value of u is chosen to be 7 to demonstrate the adaptability of the mix to the

user’s behavior in several iterations. The starting value u1 can be any positive value and

will quickly converge to an appropriate range.

7.3.2 Experimental results

Performance results are obtained for each dataset for various mix parameters. The average

lag and loglikelihood ratio of the model trained on the interval mix data to the model trained

on the original data are determined. The loglikelihood ratio usually favors the model trained

on the data after passing through the interval mix, contrary to the results of the interval mix.

This is primarily due to the resulting time interval distribution of the interval mix at the

arrival process. The interval mix produces time intervals which are more clustered than the

delay mix, leading to a stronger separation between active and passive states in the trained

model.

7.4 Summary

The identification and verification performance results of each mix as a function of the

mean lag δ̄ are summarized in Figure 7.5. The interval mix generally provides greater
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b δ̄ lr ACC EER AUC AMRT SMAPE

K
ey

st
.(

fix
ed

) 0.1 113.65 -38.95 0.40 2.05 3.08 1.22 1.10
0.5 229.89 -26.82 0.26 2.68 4.62 1.30 1.45
1.0 332.38 17.07 0.23 3.07 5.70 1.36 1.71
1.5 461.97 66.05 0.18 3.40 6.74 1.41 1.91
2.0 583.70 126.34 0.14 3.44 7.00 1.46 2.10

K
ey

st
.(

fr
ee

) 0.1 647.93 -286.97 0.51 3.58 5.16 1.49 1.19
0.5 2896.62 218.41 0.37 4.39 7.69 1.69 1.56
1.0 5352.91 781.14 0.36 4.26 7.70 1.73 1.78
1.5 7333.97 1297.78 0.33 4.19 7.94 1.79 1.96
2.0 9728.61 1832.20 0.33 4.36 7.99 1.84 2.12

B
itc

oi
n

0.1 6998.06 128.43 0.45 1.41 1.80 1.12 0.87
0.5 12842.49 740.03 0.51 1.34 1.71 1.19 1.10
1.0 16570.40 1463.71 0.48 1.42 1.82 1.24 1.25
1.5 21441.46 2178.37 0.56 1.51 1.96 1.31 1.36
2.0 27184.57 2834.23 0.58 1.52 2.03 1.36 1.45

C
om

m
its

0.1 2.31 -135.83 1.83 0.99 1.02 1.03 0.93
0.5 4.25 -35.50 2.33 0.94 0.99 1.04 1.08
1.0 5.49 61.22 1.83 0.94 0.96 1.04 1.21
1.5 6.88 128.60 1.17 0.92 0.96 1.08 1.28
2.0 8.50 189.73 1.00 0.96 1.00 1.10 1.35

V
is

its

0.1 3805.90 75.94 0.90 0.96 1.03 1.02 0.98
0.5 8975.00 349.44 0.50 0.97 1.02 1.03 1.25
1.0 13277.57 624.49 0.90 0.91 0.92 1.05 1.34
1.5 17686.12 851.85 1.10 0.83 0.86 1.08 1.46
2.0 22458.98 1074.81 1.40 0.92 0.97 1.07 1.56

Te
rr

or

0.1 27.44 -27.08 0.89 0.96 0.92 1.05 0.94
0.5 86.61 97.27 1.44 0.85 0.79 0.99 1.08
1.0 125.26 202.96 1.66 0.90 0.82 1.03 1.21
1.5 163.36 281.75 1.22 0.80 0.74 1.18 1.23
2.0 203.81 349.81 2.21 0.80 0.71 1.28 1.24

Table 7.5: Interval mix performance results.



CHAPTER 7. PRIVACY ISSUES 144

masking capabilities than the delay mix for the same lag. For low-frequency events, using

a mix has the opposite effect and actually increases performance results.
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Figure 7.5: Time lag vs mix performance (original figure).



Chapter 8

Conclusions

Time interval biometrics is multidisciplinary, borrowing ideas from various fields including

biology, statistics, machine learning, computer science, and psychology. The aim is to

capture the fundamental principles underlying human temporal behavior and utilize these

for the purpose of biometric identification and verification. A wide range of human actions

were considered in this work to demonstrate the utility of time interval biometrics across

several modalities.

8.1 Discussion

Humans exhibit individually unique temporal behavior for a variety of activities, and this

behavior can be used to identify and verify. High-frequency actions, such as keystroke

and Bitcoin transactions, tend to be more stable than those that are low-frequency, such as

source code authorships and terrorist events. This may be due partly to the greater influ-

ence of exogenous variables on low-frequency events. For example, the timing between

keystrokes is driven by learned motor behavior, while the timing between Linux kernel

commits is the result of task difficulty, priority, and programmer schedule. It is unlikely

that time intervals alone provide sufficient means of identification and verification, how-

ever greater than chance accuracies indicate individualized temporal behavior in numerous

scenarios.
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For time intervals, the POHMM better captures the underlying structure of the data

than the HMM. The increase in power comes from a dependence on event types. The

underlying system state, which remains hidden, is partially observed through the type of

event that occurs. This offers greater identification and verification capability using the

POHMM over the HMM.

The proposed strategies for masking temporal behavior offer some solace to those who

wish to remain truly anonymous. Despite this, a limitation of any masking strategy is the

lag introduced between the user and the application. With a 100 ms delay for keystrokes,

which would be hardly noticeable to the user, the identification and verification accuracies

are approximately halved. Allowing a 1 day lag for Bitcoin transactions achieves a similar

effect. Results indicate that the biggest gains in terms of identification and verification

accuracy reduction occur within a lag proportional to the expected time interval of the user,

and beyond a certain point the reduction in accuracy is incremental. Interestingly, even

with a lag of 1 s, free-text keystroke users are identifiable with close to 50% accuracy.

8.2 Future work

There are several reasons to believe that time interval biometrics will become increasingly

popular over the next several decades. With increased privacy and security concerns, tem-

poral behavior remains largely ignored. This is likely to change, as timestamps are ubiqui-

tous, perhaps more so than any other biometric. Future work should further investigate the

mechanisms for masking temporal behavior and the range of modalities that are available.

Researchers Buhusi and Meck note, “space is gradually losing its value in a world of

computer networks ... and time is becoming the essence of our times” (Buhusi and Meck,

2005). Timestamps will likely prevail in the age of privacy. The encryption of transmitted

messages may be resilient to standard techniques of identification that rely on payload

analysis, however they remain susceptible to the methods developed in this work if the

time of transmission can be observed. Identification and verification methods relying on

temporal information can still be improved considerably, and the utilization of temporal

behavior for biometric purposes will likely remain an ongoing area of research.



Appendix A

Phase space reconstruction

Phase space reconstruction is a process by which a univariate time series is embedded in

a higher dimension through time delay embedding. Takens’ Theorem states that a proper

time delay embedding of a univariate time series may reveal the structure of the underlying

dynamical system (Takens, 1981). Time delay embedding requires the estimation of an

embedding dimension de and time lag τe. For a given de and τe, the embedding procedure

transforms the original time series, y, into a series of embedded vectors y where

yn = [yn,yn−τe,yn−2τe , . . . ,yn−(de−1)τe ] .

There are several heuristics that can be used to determine the time lag and embedding di-

mension (Abarbanel, 1996; Small, 2005). The time lag is determined first since its heuristic

does not depend on the embedding dimension. In this work, both embedding parameters

are determined for each feature in each dataset.

A.1 Time lag

The time lag is determined using the mutual information between lagged components of y,

I (T ) =
N−T

∑
n=1

P(yn,yn+T ) log2
P(yn,yn+T )

P(yn)P(yn+T )
(A.1)

148
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where y has N components. The time lag at which the first local minimum occurs is chosen

as the embedding parameter. This ensures that the lagged data are somewhat correlated

(Small, 2005). As suggested in Abarbanel (1996), when there is no local minimum up to

some Tmax, τe is taken to be T where I (T )/I (0) ≈ 1
5 . A maximum lag of Tmax = 5 is

used in this work.

A.2 Embedding dimension

The method of false nearest neighbors (FNN) is used to estimate embedding dimension de.

Two embedded vectors yn and ym are FNN if they are neighboring in dimension de and

distant in dimension de +1. The embedding dimension can be estimated by increasing de

until the proportion of FNN falls below some threshold. This ensures that the underlying

dynamical system is unfolded and not projected onto a dimension which is too small, caus-

ing an unnecessarily large number of FNN. To classify two vectors as FNN, consider the

normalized increase in distance when going from de to de +1,

R =
|yn−(de+1)τ − ynNN−(de+1)τ |

‖ yn−yNN
n ‖ (A.2)

where yNN
n is the nearest neighbor to yn, and nNN is the index of yNN

n . When R is above

some threshold, Rthresh, then yn and yNN
n are considered to be FNN. This work uses the

threshold Rthresh = 15, a value suggested to give reasonable results in many situations

(Small, 2005). The embedding dimension is chosen to be the smallest de that results in less

than 5% FNN. If the proportion of FNN does not fall below 5% up to demax = 5, then de

is take to be demax. An upper bound on the embedding dimension is necessary since noisy

samples are prone to high embedding dimensions (Small, 2005).

A.3 Embedding parameters

The embedding parameters for each sample are determined and the global embedding pa-

rameters taken to be the parameters with the highest frequency, i.e. the mode, over all sam-

ples. As an example, the densities of de and τe for the 366 Bitcoin time interval samples
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(a) Distribution of τe. For each sample, τe is se-
lected where the first minimum of mutual infor-
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(b) Distribution of de. For each sample, de is se-
lected where the proportion of FNN drops below
5%.

Figure A.1: Bitcoin time interval embedding parameter distributions (original figure).

are shown in Figure A.1. The high density at de = 5 indicates there are many samples that

desire a greater embedding dimension due to either noise or an inherently high-dimensional

underlying system. Embedding parameters for each feature are shown in Table A.1.



APPENDIX A. PHASE SPACE RECONSTRUCTION 151

Feature Dim. Lag Feature Dim. Lag

K
ey

s.
(f

re
e) Time interval 5 1

K
ey

s.
(fi

xe
d) Time interval 4 1

Duration 5 1 Duration 4 2
Time of word 5 1 Time of word 4 3
Time of sentence 3 5 Time of sentence 2 3
Time of paragraph 1 5 Time of paragraph 1 5

B
itc

oi
n

Time interval 4 1
C

om
m

its
Time interval 5 1

Minute of hour 4 2 Day of week 4 2
Hour of day 5 2 Week of month 5 2
Day of week 5 5 Time to commit 5 1
B value 5 1 Num. commits 5 1
Num. outputs 5 1 Num. committers 5 1
Num. inputs 5 1 Description chars 3 1
Input/output balance 5 1 Description words 3 1

V
is

its

Time interval 3 2

Te
rr

or

Time interval 3 1
Hour of day 5 1 Day of week 4 1
Day of week 5 1 Week of month 5 3
Week of month 5 2 Month of year 5 4
Duration 3 1 Num. perpetrators 5 1
Tardiness 3 1 Num. killed 5 1
Forecast 5 1 Num. captured 1 1
Num. people 4 2 Num. related events 1 1

Table A.1: Embedding dimension and time-lag determined for each feature of each dataset
using the mutual information and method of false nearest neighbors.
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Nonlinear prediction error

Given a time series yn and predictions ŷn, the root mean squared (RMS) prediction error is

e =
1
N

√
N

∑
n=1

(yn− ŷn)

where N is the length of the time series. The system history of a deterministic nonlinear

dynamical system can be used to predict future states and obtain the nonlinear prediction

error (NPE) (Lorenz, 1969). Nonlinear time series predictions are made after an appropriate

embedding is determined for y. To predict yn+1, consider the embedded vector yn in Rde .

Let the k nearest neighbors to yn be yNN
n , and let yNN

n+1 be the successors to each of the

neighbors yNN
n . The prediction ŷn+1 is calculated as a weighted sum of yNN

n+1, the scalar

components of the nearest neighbor successors yNN
n+1.

In this work, predictions are made by assigning the yNN
n+1 linear decreasing weights

where yNN
n are ordered by their distance from yn. The first neighbor is assigned a weight

of k
k(k+1)/2 , the second a weight of k−1

k(k+1)/2 , and so on, where the kth neighbor has a weight

of 1
k(k+1)/2 . This places more emphasis on close neighbors, while retaining some influ-

ence from distance neighbors. Other weighting strategies can be used, such as uniform or

exponentially decreasing weights. The out-of-sample prediction error between two time

series is obtained by taking the nearest neighbors from another sample. To make out-of-

sample predictions, take xNN
n (and consequently xNN

n+1) from a different sample xn, making

predictions similarly as above.
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y j+1

y l

ŷn+1

yn

Figure B.1: Nonlinear prediction example (original figure).

An example is shown in Figure B.1 in which yn+1 is predicted. The 3 nearest neighbors

to yn are determined and their successors used to make the prediction. In this example,

uniform weights are used and yn+1 is predicted from the average of y j+1, yk+1, and yl+1,

the successors to the 3 nearest neighbors of yn. The appropriate scalar component of ŷn+1

can be taken to obtain the prediction ŷn+1.
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List of abbreviations and symbols

Abbreviations

AAFT amplitude adjusted Fourier transform

AATFT amplitude adjusted truncated Fourier transform

ACC accuracy

AMRT average maximum rejection time

AUC area under curve

AF Allan Factor

AP access point

BW Baum-Welch

CI confidence interval

CV coefficient of variation

context-HMM context hidden Markov model

DCHMM double chain hidden Markov model
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dof degrees of freedom

ECG electrocardiogram

EM expectation maximization

FNN false nearest neighbors

GTD Global Terrorism Database

h-state hidden state

HMM hidden Markov model

HSMM hidden semi-Markov model

kNN k-nearest neighbor

MCVSVM minimum class variance support vector machine

MRT maximum rejection time

ML maximum likelihood

MOOC massively open online course

MST minimum spanning tree

MWW multivariate Wald-Wolfowitz

NPE nonlinear prediction error

NPHMM nonhomogeneous Poisson hidden Markov model

p-state partially observed state

partly-HMM partly hidden Markov model

partially-HMM partially hidden Markov Model

POHMM partially observable hidden Markov model
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RMS root mean squared

ROC receiver operating characteristic

SCV stratified k-fold cross-validation

SMAPE symmetric mean absolute percentage error

SVM support vector machine

Symbols

ai j|ω,ψ Probability of transitioning from state i to state j, given observed p-state ω

while in state i and ψ in state j

A area test statistic

A anonymity

Cv coefficient of variation

b j|ω Observation distribution parameters in state j, given p-state ω

de embedding dimension

e root mean squared error

f (·) probability density function

I (·) indicator function

I (·) mutual information between lagged time series components

m number of unique p-states

M number of hidden states

MI (·) mutual information between two random variables
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n observation index

N number of observations

N (T ) number of events in a length T time window

P(·) probability function

q discriminative test statistic

R normalized increase in distance

S number of surrogate samples

t time

T time window

U number of users

U uniform distribution

xN
1 sequence of observed values

y univariate time series

y series of embedded vectors

zn hidden state at time tn

τ time interval

τe embedding time lag

δ time lag between a mix input and output

θ model parameters

ω orψ p-state

ΩN
1 sequence of p-states
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γ j|ω(n) Posterior probability of being in state j, given observations and p-state ω at

time tn

ξi j|ω,ψ(n) Posterior probability of transitioning from state i at time tn to state j at time

tn+1, given p-state ω and ψ at times tn and tn+1, respectively

π j|ω Probability of being in state j at time t1, given observed p-state ω

Π j|ω Steady state probability of being in state j, given p-state ω

ε loglikelihood reduction convergence criterion

µ normal distribution mean

σ normal distribution standard deviation

η log-normal distribution log-mean

ρ log-normal distribution log-standard deviation

x̂ parameter estimate of x

ẋ parameter re-estimate of x
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