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Abstract

The Keystroke Biometrics Ongoing Competition (KBOC) presented an anomaly

detection challenge with a public keystroke dataset containing a large number of

subjects and real-world aspects. Over 300 subjects typed case-insensitive repe-

titions of their first and last name, and as a result, keystroke sequences could

vary in length and order depending on the usage of modifier keys. To deal with

this, a keystroke alignment preprocessing algorithm was developed to estab-

lish a semantic correspondence between keystrokes in mismatched sequences.

The method is robust in the sense that query keystroke sequences need only

approximately match a target sequence, and alignment is agnostic to the par-

ticular anomaly detector used. This paper describes the fifteen best-performing

anomaly detection systems submitted to the KBOC, which ranged from auto-

encoding neural networks to ensemble methods. Manhattan distance achieved

the lowest equal error rate of 5.32%, while all fifteen systems performed better

than any other submission. Performance gains are shown to be due in large

part not to the particular anomaly detector, but to preprocessing and score

normalization techniques.
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1. Introduction

The Keystroke Biometrics Ongoing Competition (KBOC) presented an anomaly

detection challenge in the form of a biometric competition [28, 29]. Given only

several template samples for training, participants were tasked with designing

keystroke biometric verification systems that achieved a low equal error rate on

a set of unlabeled query samples. Unlike previous keystroke biometric competi-

tions [23], the KBOC utilized a platform that allows ongoing participation [26].

This paper describes the best-performing systems of the KBOC. These systems

addressed two unique features of the KBOC dataset not typically seen in other

keystroke datasets.

The keystrokes closely match, but are not necessary identical to, a target se-

quence. Genuine and impostor subjects were required to type a case insensitive

match to the template subject’s first and last name. As a result, the samples

contain insertions, deletions, substitutions, and transpositions from each other,

primarily due to the usage of modifier keys. Even the template keystroke se-

quences sometimes differ from one another, reflecting inconsistencies in the way

a genuine subject types their name. Thus, the template and query samples

only approximately match a target keystroke sequence. This scenario is not

quite fixed-text, such as password entry, and not quite free-text, such as an

essay response. To deal with the mismatched samples, a keystroke alignment

preprocessing algorithm robust to typing errors was developed. The method

maximizes the amount of data available for training and testing, achieving bet-

ter performance over benchmark alternatives, such as discarding mismatched

keystrokes or truncating sequences to the length of the shortest sequence.

The target keystroke sequence is unique to each subject. Unlike most fixed-

text datasets in which every subject types the same password or passphrase (e.g.,

[15] and other datasets described in Giot et al. [10]), the target input string1

1string refers to the character sequence that actually appears on screen, and keystroke

sequence refers to the sequence of keys pressed. For example, both keystroke sequences “G,

Backspace, T” and “T” result in string “t”. Keyboard key names are denoted in monospace.
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for each subject in the KBOC dataset was the subject’s first and last name.

Thus, the keystroke sequences for each subject are different. Importantly, the

samples reflect a keystroke sequence that the genuine subject is more familiar

with than an impostor. Since the keystroke sequences are different for each

subject, two-class models (i.e., genuine vs. impostor) are not practical due to

the difficulty in utilizing negative data for training. Therefore, only one-class

models, i.e, anomaly detectors, are considered. Given only several template

samples are available for training, the anomaly detector must be able to learn

a given subject’s pattern quickly. To this end, feature and score normalization

techniques robust to outliers and few training samples were developed.

The keystroke alignment and score normalization techniques described in

this work are agnostic to the particular anomaly detector used, and results are

obtained for a range of models. The complete anomaly detection systems uti-

lize a processing pipeline that consists of four main steps: keystroke alignment,

feature extraction, scoring, and score normalization. During keystroke align-

ment, a correspondence is established between keystrokes of the query and tem-

plate samples, which may differ slightly as described below. The query sample

keystrokes are aligned to match the template, which enables standard fixed-text

techniques to subsequently be applied. Keystroke timing features are extracted

from the aligned sequences using normalization bounds specific to each subject.

Following this, an anomaly detector is trained on the template samples and a

similarity score is assigned to the query sample. Finally, the score is normalized

using subject-specific normalization bounds.

Performance gains are largely due to the score normalization and keystroke

alignment techniques, over alternative methods, as demonstrated in the results

of this work. The feature and score normalization techniques use subject-specific

bounds which are robust against feature and score outliers, respectively. The

keystroke alignment method is robust to typing errors and slightly differing

keystroke sequences. This maximizes the amount of data available for training

and testing, leading to a reduced failure to capture (FTC) rate [3]. The fif-

teen best-performing systems in the KBOC ranged from auto-encoding neural
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networks to Manhattan distance, and all fifteen systems achieved a lower equal

error rate than any other submission.

The rest of this paper is organized as follows. Section 2 provides a back-

ground of the KBOC data collection procedure and competition details. Sections

3 and 4 describe keystroke alignment and feature extraction, respectively. Sec-

tion 5 describes the various anomaly detectors, followed by score normalization

in Section 6. Experimental results are contained in Section 7, and Section 8 dis-

cusses and analyzes the effects of keystroke alignment and score normalization.

Finally, Section 9 draws conclusions and discusses future work. Source code of

all the systems described and to reproduce the results in this paper is available

at https://github.com/vmonaco/kboc.

2. Background

The KBOC was part of the IEEE Eighth International Conference on Bio-

metrics: Theory, Applications, and Systems (BTAS 2016) and had two modes

of participation: online mode and offline mode. Participation in the online mode

is continuous, hence the “ongoing” competition2 [28, 29]. This paper describes

only the offline mode, which ran from January 31, 2016 (when the test dataset

became available), to April 22, 2016 (the deadline for submissions). Each partic-

ipant could submit up to 15 systems, and submissions were evaluated only after

the competition deadline to avoid overfitting. The KBOC dataset, described in

this section, is publicly available upon request3.

2.1. Dataset

Two separate datasets were made available to competition participants: a

development set for the purpose of system development, and a test set for the

purpose of system evaluation. The development set contains 10 subjects, each

2Current leaderboard https://www.beat-eu.org/platform/search/aythamimm/KBOC16_

COMPETITION_SEARCH/
3See https://sites.google.com/site/btas16kboc/home
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with 24 labeled samples (14 genuine and 10 impostor). The test set contains 300

subjects, each with 4 labeled template samples and 20 unlabeled query samples.

The ratio of genuine to impostor samples in the test set remained hidden from

competition participants to increase difficulty.

Data collection was performed in a semi-controlled environment designed

for multimodal recordings [9]. Subjects were geographically dispersed across 6

collection sites and approximately evenly distributed by age (42% 18–25, 22%

25–35, 16% 35–45, 20% >45) and gender (54% male). Each subject participated

in 4 data collection sessions within 4 months time. During each session, the

subject typed 4 case-insensitive repetitions of their own name (2 in the middle

of the session and 2 at the end) and the names of 3 other subjects (7 samples

total). While there were totally 16 genuine and 12 impostor samples available

for each subject in the original dataset [9], the numbers of genuine and impostor

samples were randomly selected for the KBOC test dataset. This ranged from

8 to 12, leaving 4 template samples per subject. Samples that contained typing

errors during data collection were discarded. However, the number of keystrokes

per subject could vary due to the use of modifier keys, such as Shift and Caps

Lock. This is an important characteristic motivating the development of a

keystroke alignment preprocessing algorithm in Section 3.

Each raw sample contains a sequence of 3-tuple events comprised of the

action (press or release), keyboard scancode, and the time interval since the

previous event (beginning with 0 for the first event). In this work, the action

sequence is converted to a keystroke sequence, wherein each keystroke event is

a 3-tuple that contains the key name, press timestamp, and release timestamp.

Samples range in length based on the subject’s name, from 12 to 30 keystrokes

with an average of 25.5± 4.4 keystrokes. Timing features, described in Section

4, are extracted from the aligned keystroke sequence.

Timestamps were recorded with 1 millisecond (ms) resolution, although the

actual resolution is limited by scheduling policies of the operating system kernel.

Specifically, most operating system kernels handle interrupts from peripheral

devices on a fixed period set by a global timer. Timestamp resolution is then
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(a) KBOC keystroke timings with estimated 46.4 ms resolution.
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(b) Monaco et al. [21] keystroke timings with estimated 15.6 ms resolution.

Figure 1: Resolution of the KBOC keystroke timings compared to another

dataset. Resolution is estimated by taking the difference between modes of

a Gaussian KDE applied to the empirical press-press latency distribution.
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limited by how quickly the kernel can respond to an interrupt generated by the

keyboard device, which is at most the global timer period. This effect is evident

in the empirical distribution of press-press latencies, shown in Figure 1a. A

Gaussian kernel density estimate (KDE) is applied to the latencies to identify

regions of relatively high density, i.e., clustered latencies. The high density re-

gions reflect quantization introduced by the global timer, and dispersion within

each region reflects timestamp precision4. Taking the mean distance between

modes of the Gaussian KDE gives an estimated precision of 46.4 ms, close to

the 40 ms estimated precision in Morales et al. [29]. For comparison, the same

technique is applied to the press-press latencies of a free-text keystroke dataset

collected on a different platform: a Java application running on Windows desk-

top computers [21]. The resolution of the free-text dataset, shown in Figure 1b,

is estimated to be 15.6 ms, which agrees very well with the 15.6 ms Windows

default system-wide timer [19]. According to results in Killourhy and Maxion

[13], the relatively lower resolution of the KBOC timings makes anomaly de-

tection more challenging, as higher equal error rates have been associated with

lower resolution timestamps. Besides the global timer period, system load and

other environmental factors also play a role in determining the resolution and

precision of keystroke event timestamps [14].

2.2. System evaluation

Anomaly detectors are often evaluated by their equal error rate (EER), the

point on the receiver operating characteristic (ROC) curve at which the false

acceptance rate (FAR) is equal to the false rejection rate (FRR). The EER can

be derived by varying either a global threshold or subject-dependent thresholds.

To compute the global EER, the ROC curve is derived by varying a global

threshold. In this case, the proportions of false positive and false negative

classifications from all subjects are counted to compute the FAR and FRR at

4Note that resolution is the degree to which a measurement can be made and precision is

the degree to which a measurement can be repeated.
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each threshold value.

The subject EER is the EER obtained by deriving an ROC curve for each

subject. As a subject-dependent threshold is varied, the FAR and FRR are com-

puted using the number of false positive and false negative classifications for a

single subject. Since this produces an EER for each subject in the dataset, sys-

tem performance is typically characterized by the mean and standard deviation

(SD) of the distribution of subject EERs.

The KBOC anomaly detectors are evaluated by the global EER. There are

20 query samples for each subject in the KBOC test dataset, which provides

300×20 = 6000 scores to derive the global ROC curve. In the rest of this paper,

EER refers to the global EER unless otherwise noted.

3. Keystroke alignment

3.1. Motivation

The KBOC data collection procedure required samples to be a case-insensitive

match to the subject’s first and last name. As a result, the presence of modifier

keys (e.g., Shift and Caps Lock) produced different keystroke sequences for the

same case-insensitive string typed. Samples could vary in length (i.e., number

of keystrokes) depending on whether modifier keys were used for capitalization.

They could also vary in sequence depending on the order of keys pressed. In

particular, both template and query samples contain:

• Insertions and deletions, e.g., due to the use or disuse of Shift.

• Substitutions, e.g., due to the use of Caps Lock instead of Shift5.

• Transpositions, e.g., both sequences “Space, Shift, T” and “Shift, Space,

T” result in the string “T” when the Shift key is prolonged.

5There are also some substitutions due to different keyboard scancode sets being used [4].

In set 1, Keypad-minus is 35 (hex), and in set 2 Keypad-minus is 4a (hex).
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This scenario is not quite fixed text, such as password entry which requires an

exact match, and not quite free text, such as answering an open-ended question

which places no restriction on the text entered. Instead, the keystroke sequence

closely matches some target sequence for each subject.

The need for a keystroke alignment method is verified by comparing the

keystroke sequences, and not the typed string. Consider all possible combina-

tions of template samples for each subject, i.e,
(
4
2

)
× 300 = 1800 combinations.

Of these, 226 out of 1800 (12.6%) template-to-template comparisons differ from

each other. The average Damerau-Levenshtein (DL) distance, which measures

insertions, deletions, substitutions, and transpositions [6], is 0.053± 0.276 with

a maximum distance of 4. Similarly, there are 20 × 4 × 300 = 24, 000 possible

query-to-template combinations in which a query sample is compared to a single

template sample. Of these, 1545 out of 24,000 (6.4%) query-to-template com-

parisons differ from each other, with an average DL distance of 0.074 ± 0.323

and maximum distance of 7.

Many anomaly detectors operate on fixed-length feature vectors, motivat-

ing the development of a method to compare slightly differing sequences. One

option is to use a free-text approach in which fixed-length feature vectors are

extracted from arbitrary keystroke sequences using a fallback hierarchy of de-

scriptive statistics [21]. In this case, the fact that the sequences are very close

to some target sequence is ignored. Instead, it would be desirable to create

fixed-length keystroke sequences from the semi-constrained sequences and then

apply standard feature extraction techniques [15]. The method introduced in

this work aims to align the keystrokes from two slightly differing sequences and

then extract standard time interval features from the aligned sequences.

3.2. Alignment method

To compare slightly-differing keystroke sequences, a sequence-alignment al-

gorithm was developed to establish a correspondence between keystrokes of two

different samples. This allows two samples with similar keystroke sequences to

be compared using an anomaly detector that operates on feature vectors of fixed
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length, such as Manhattan distance. In establishing the correspondence, let the

target sequence be a fixed sequence of keystrokes to which a given sequence will

be aligned. Thus, the given sequence is modified to match the target.

Keystrokes from the given sequence are aligned to the target sequence as

follows. For each key in the target sequence, find the same key in the given se-

quence with the closest position. If the key does not exist in the given sequence,

then use as a substitute the key in the corresponding position. If a key appears

in the given sequence, but not the target sequence, it is simply ignored. The

keystrokes in the given sequence are then reordered by their mapping to the

target sequence, as shown in Figure 2a.

Since there exist both within-template and query-to-template differences in

the keystroke sequences, as demonstrated in Section 3.1, a two-step alignment

process is employed. First, let the target sequence for each subject be the

template sample with fewest keystrokes. The remaining 3 template samples for

each subject are aligned to the target sequence. This creates a set of aligned

template samples from which the anomaly detector is trained. Next, the query

samples for each subject are aligned to the target sequence. The aligned query

samples are then scored by the fixed-text anomaly detector.

Alignment ensures an element-wise semantic similarity between the given

and target keystrokes, and subsequently, the extracted features. In other words,

considering the keystrokes of a target sequence, the corresponding keystrokes in

the given sequence should have been pressed with similar intention by the sub-

ject. Keystroke alignment ensures this correspondence by matching substituted

and transposed keys between the two sequences.

To illustrate its utility, keystroke alignment is compared to some benchmark

alternatives, also shown in Figure 2. Let truncate be the method in which the

keystrokes of the given sequence are simply truncated to be the same length as

the target sequence. This approach is shown in Figure 2b. Unless the keystroke

sequences match exactly, semantically different features will be compared by

the anomaly detector, following feature extraction. Truncation is especially

sensitive to sequences that differ in length, as shown in the example.
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Target

Given

F I R S T Space Shift L A S TShift

F I R S T Shift Space L A S T

(a) Alignment.

  

Target

Given

F I R S T Space Shift L A S TShift

F I R S T Shift Space L A S T

(b) Truncate.

  

Target

Given

F I R S T Space Shift L A S TShift

F I R S T Shift Space L A S T

(c) Discard.

Figure 2: Keystroke alignment vs. two benchmark methods. In this example, the

first Shift is deleted in the given sequence, and “Shift, Space” are transposed.

Keystroke alignment (2a) preserves the maximum amount of data, while ensur-

ing a semantic correspondence between keystrokes. Truncation (2b) ignores key

names, and is sensitive to sequences with differing lengths. Discarding modifier

keys (2c) ensures keystrokes match exactly (assuming case-insensitive equality),

but ignores some of the data.
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Alternatively, consider the method of discarding modifier keys, shown in

Figure 2c. While this method has the advantage that the resulting sequences will

match exactly after discarding modifier keys, it ignores distinguishable behavior

which may have been captured by modifier key usage. For example, if a subject

typically types “Left Shift, L” for a capital “L”, and an impostor types “Right

Shift, L”, the press-press latencies of the impostor will likely be longer than

that of the genuine subject. This is due keys that are far apart generally being

be pressed in quicker succession than keys that are close together as a result of

finger and/or hand reuse [32, 22].

4. Feature extraction

Time interval features are extracted from the aligned keystroke sequence,

wherein each keystroke event contains a press time, release time, and key name.

While a variety of keystroke timings can be computed from the timestamps,

this work uses the press-press latencies and key-hold durations. The press-press

latency is the time interval between two successive key-presses, denoted by p.

The key-hold duration is the time interval from the press to release of each key,

denoted by d. If the target sequence contains 11 keystrokes, then the feature

vectors for every given sequence aligned to the target will contain 31 features

(10 latencies and 11 durations). Note that any other time interval, such as

release-press or release-release latencies of successive keystrokes, can be formed

by a linear combination of the press-press latency and key-hold duration.

The press-press latency is typically positive since keystrokes are normally

ordered by their press time (as they would appear on screen to the user). After

a given sequence has been aligned to a target sequence, the press-press latency

can be negative when there is a transposition between the given and target

sequence. Using Figure 3 as an example, the keystrokes in the given sequence

are reordered to the positions of the corresponding keys in the target sequence.

12



  

Shift

Target

Given

Space Shift L A S T

Space L A S T

Time

p1 p2

p1

p2

p3 p4 p5

p3 p4 p5

0

Key press

Key release

Legend

pi
ith press-press 
latency

Figure 3: Keystroke features.

In the given sequence, the press-press latency from Space to Shift, denoted by

p1, is negative since Shift is pressed before Space.

Reordering the keystrokes of the given sequence in this way, such that the

press-press latency becomes negative for transposed keys, does not have an

adverse effect on anomaly detection as long as this behavior is also captured in

the template samples. Consider a typist who presses the keys Space and Shift

in very quick succession. The press-press latency between these keys will be

close to 0, and if normal behavior is to transpose these keys 50% of the time,

the distribution of press-press latencies will be centered on 0. Then, it does not

matter whether the feature in the given sequence is positive or negative, i.e.,

whether the given sequence contains “Space, Shift” or “Shift, Space”; it has

equal likelihood in both cases.

4.1. Feature normalization

The latency and duration features are normalized to the range [0, 1]. The

ith normalized press-press latency ṗi is given by

ṗi = max

[
0,min

(
1,

pi − bpc
dpe − bpc

)]
(1)
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where pi is the raw feature and bpc and dpe provide the lower and upper bounds

for normalization, respectively. Let µp be the mean and σp the SD of the

distribution of latencies in the subject’s aligned template samples. That is, µp

and σp are determined by the aligned templates no matter whether the feature

being normalized is from a query or template sample. Normalization bounds

are given by

bpc = µp −Hfσp

dpe = µp +Hfσp (2)

where Hf is a free parameter. In this work, results were obtained using Hf = 1,

i.e., normalizing features to within one SD of the mean. The duration features

are normalized similarly, replacing d for p.

Note that feature normalization uses the first and second order statistics

of the distribution of the subject’s aligned template samples. The effect of

this approach is twofold. First, it ensures that outlier features do not greatly

affect the normalization bounds as they would using min/max normalization.

Second, per-subject normalization ensures that normalized features are relative

to the subject’s template since each subject has their own normalization bounds.

Query samples are normalized using the lower and upper bounds determined

from the template samples. Thus, if the query sample is genuine, its normalized

features will be closer to the center of the interval [0, 1], whereas the normalized

features of an impostor sample will be closer to the endpoints (assuming it is

greater or less than the genuine mean).

5. Anomaly detection

The keystroke alignment and feature normalization methods introduced in

this work are agnostic to the particular anomaly detector used. Six different

anomaly detectors, and one ensemble method, are described in this section.

Neural network models were implemented using the TensorFlow library [1]. All

models were implemented in Python and remain publicly available at https:

//github.com/vmonaco/kboc.
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5.1. Autoencoder

The basic autoencoder (AE) is a neural network that aims to encode and

then decode its input [2]. The network topology consists of equally-sized input

and output layers separated by at least one hidden layer. Successive layers are

fully connected through weight matrices, a bias vector, and a nonlinear function.

It is common to use tied weights, i.e., the weight matrix connecting the hidden

and output layers is simply the transpose weight matrix connecting the input

and hidden layers. This limits the number of model parameters and acts as a

kind of regularization.

Using feature vector x as input, the hidden layer is calculated as

h = f (x) = tanh (Wx+ bh) (3)

where W is the weight matrix and bh is the hidden layer bias vector. Similarly,

the output layer y is given by

y = g (x) = tanh
(
W>h+ by

)
(4)

where by is the output bias vector. The complete model parameters consist of

θ = {W, bh, by}. Hidden layers can be stacked to create a deep network, and

dimensions of the hidden layers comprise the model hyperparameters. Typically,

at least one hidden layer should be smaller than the input layer to achieve a

compressed representation and avoid learning the identity function. Parameters

are determined by back-propagating gradients from a squared error loss function,

L (x, y) = ‖x− y‖2 . (5)

where y is the reconstructed output. The objective function of the basic au-

toencoder is given by

JAE (θ) =
∑
x∈D

L (x, g (f (x))) (6)

where D is the set of training examples. Bias parameters are initialized to 0

and weights are initialized from a random uniform distribution such that the
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scale of the gradients in each layer is roughly the same [11]. During testing, the

score of a query sample is given by the negative reconstruction error, −L (x, y).

5.2. Contractive autoencoder

The contractive autoencoder (CAE) is an autoencoder that uses the Frobe-

nius norm of the hidden layer Jacobian as a regularization term [31]. This en-

ables a sparse representation of the input whereby the dimension of the hidden

layer is much larger than the input and output layer dimensions. The CAE is

closely related to the denoising autoencoder, in which the goal is to reconstruct

an input vector that has been corrupted by noise [34].

The CAE in this work uses a sigmoid activation function. The hidden layer

is given by

h = f (x) = σ (Wx+ bh) (7)

where σ (z) = (1 + e−z)
−1

. Similarly, the output layer is given by

y = g (x) = σ
(
W>h+ by

)
. (8)

The objective function of the CAE includes a regularization term that penalizes

the Jacobian of f ,

JCAE (θ) =
∑
x∈D

L (x, g (f (x))) + λ‖Jf (x) ‖2F

where λ is a free parameter and ‖ · ‖2F is the squared Frobenius norm. Similar

to the basic autoencoder, the loss function, L, is the squared reconstruction

error. Using a sigmoid activation function allows for efficient computation of

the Jacobian, given by

‖Jf (x) ‖2F =
∑
ij

[
∂hj (x)

∂xi

]2
=

dh∑
i=1

[hi (1− hi)]2
dx∑
j=1

W 2
ij (9)

where dh and dx are the hidden and input layer dimensions, respectively. Similar

to the basic AE, bias vectors are initialized to 0 and weight vectors use Xavier

initialization [11].
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5.3. Variational autoencoder

The variational autoencoder (VAE) is a probabilistic autoencoder with con-

tinuous latent variables [17]. Parameters are learned efficiently by backpropa-

gation through a reparametrization trick, which allows the gradient of the loss

function to propagate through the sampling process. The objective function

of the VAE is composed of both a reconstruction loss and a latent loss. Query

sample scores are given by the negative reconstruction loss, which is the negative

log probability of the input given the reconstructed latent distribution.

5.4. One-class support vector machine

The one-class support vector machine (SVM) is an unsupervised model that

learns a separating hyperplane between the origin and feature vector points6

[33]. The free parameters of the model include η, the fraction of training errors

(samples that lie outside the separating plane), in addition to any parameters of

the kernel function. This work uses the one-class SVM implemented by scikit-

learn [30], which internally uses libsvm [5]. Query sample scores are given by

the negative distance to the separating hyperplane.

5.5. Manhattan distance

Manhattan distance between two vectors x and y is computed by

D (x, y) =

dx∑
i

|xi − yi| (10)

where dx is the dimension of the feature vectors. Query sample scores are given

by the negative Manhattan distance to the mean template vector. Thus, training

is comprised simply of computing the element-wise mean of the template vectors.

Scaled Manhattan distance was previously shown to achieve state-of-the-art

accuracy in keystroke biometric anomaly detection [15], and Manhattan distance

closely followed. Scaled Manhattan distance was not used in this work since the

6Alternatively, one may learn a minimal-volume hypersphere that encapsulates most of the

points in feature space.
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number of template samples (4) is not large enough to obtain a reliable estimate

of the absolute (or standard) deviation of each feature.

5.6. Partially observable hidden Markov model

The partially observable hidden Markov model (POHMM) is an extension of

the hidden Markov model in which hidden states are conditioned on an indepen-

dent Markov chain [24, 20]. In a two-state model of typing behavior, the subject

can be in an active state, during which relatively short time intervals are ob-

served, or passive state, during which relatively long time intervals are observed.

The keyboard key names form an independent Markov chain upon which the

hidden states are conditioned. The key name partially reveals the hidden state

since certain keys, such as Space or Shift, indicate a greater probably of being

in a passive state, i.e., of observing longer time intervals, than letter keys, such

as H and E. Despite an explosion in the number of model parameters, parameter

estimation can still be performed in linear time using a modified Baum-Welch

algorithm. A parameter smoothing technique is employed to avoid overfitting

the model to short input sequences [20].

Keystroke timing features are modeled by a lognormal distribution, and pa-

rameters are initialized based on a one-state model. The POHMM is a free-text

model, since it operates on arbitrary keystroke sequences and does not require

fixed-length input. Therefore, the POHMM does not use the keystroke align-

ment or feature extraction algorithms described in Sections 3 and 4, respectively.

Query sample scores are given by the model loglikelihood.

5.7. Ensemble

An ensemble of anomaly detectors was formed with the goal of achieving

higher accuracy than any individual member. The ensemble score is simply

the mean unnormalized score from each system in the ensemble. The sum rule

(which is equivalent to a scaled mean) has been shown to be a robust, albeit

simple, method of combining classifier output scores, especially when the scores

between the systems being combined are independent [18].
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6. Score normalization

Per-subject score normalization is employed whereby normalization bounds

are determined by the test scores for each subject. Let su be the set of scores

from subject u and sui be the ith score from subject u. The normalized score,

ṡui, is given by

ṡui = max

[
0,min

(
1,

sui − bsuc
dsue − bsuc

)]
(11)

where bsuc and dsue are the lower and upper bounds used for normalization.

Note that the clamping function max [0,min (1, ·)] ensures the resulting score is

in the range [0, 1]. Two methods of score normalization are compared, which

differ in the way bsuc and dsue are defined.

6.1. SD normalization

In SD normalization, the scores are normalized using the SD of the scores

within each subject. Let µsu be the mean score for subject u and σsu be the SD

score for subject u. The lower and upper bounds for normalization are given by

bsuc = µsu −Hsσsu

dsue = µsu +Hsσsu (12)

where Hs is a free parameter. In this work, Hs = 2 normalizes scores to within

2 SD of the mean.

6.2. Min/max normalization

Min/max normalization is achieved by letting

bsuc = min su

dsue = max su (13)

where min su and max su denote the minimum and maximum scores from sub-

ject u, respectively.
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7. Results

Hyperparameters, such as hidden layer sizes in the AE models and conver-

gence criteria, were selected from a small range that performed well on the

KBOC development set. A validation EER was determined for each system

through a Monte Carlo validation procedure using the development dataset. In

each repetition, 4 template samples were randomly selected from the genuine

samples. The remaining 20 samples (10 genuine and 10 impostor) were used as

the query samples. These conditions mimic the test dataset, in which there are

4 labeled template samples and 20 unlabeled query samples for each subject.

This process was repeated 10 times to obtain a confidence interval on the EER.

System descriptions, including hyper-parameters, are as follows:

System 1: AE with hidden layers of dimensions {5, 4, 3}. Models were trained

for 5000 epochs using gradient descent with a learning rate of 0.5.

System 2: VAE with hidden layers of dimensions {5, 5}, 3-dimensional Gaus-

sian latent space, and softplus nonlinearities between layers. Parameters

were learned by Adam, a stochastic gradient-based optimization algorithm

[16], using a learning rate of 0.001, mini-batch size of 2, and 700 epochs.

Systems 3 and 11: POHMM with two-dimensional log-normal emission (for

the press-press latency and duration) and two hidden states. Convergence

was reached when the reduction in the loglikelihood was less than 0.01.

Systems 4 and 12: one-class SVM with η = 0.5, radial basis function (RBF)

kernel, and RBF kernel parameter γ = 0.9.

Systems 5 and 13: CAE with hidden layer of dimension 400 and regulariza-

tion weight λ = 1.5. Model parameters were learned by gradient descent

with a 0.01 learning rate and 1000 epochs.

System 6: Manhattan distance.

System 7: AE with hidden layer of dimension 5.
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System Description Validation Test

SD score normalization

1 Autoencoder {5,4,3} 7.90 (1.91) 7.82

2 Variational autoencoder 6.50 (0.75) 6.46

3 POHMM 7.75 (1.36) 7.32

4 One-class SVM 7.40 (2.20) 7.35

5 Contractive autoencoder {400} 6.20 (1.27) 8.02

6 Manhattan distance 6.95 (1.17) 5.32

7 Autoencoder {5} 5.75 (1.57) 7.95

8 Contractive autoencoder {200} 6.50 (1.47) 8.08

9 Mean ensemble systems 3,4,5 5.40 (1.45) 5.68

10 Mean ensemble systems 1-8 5.85 (1.31) 5.91

Min/max score normalization

11 POHMM 8.75 (1.38) 10.35

12 One-class SVM 12.10 (1.63) 10.89

13 Contractive autoencoder {400} 7.85 (1.23) 11.20

14 Contractive autoencoder {200} 8.00 (1.25) 11.23

15 Mean ensemble systems 11-14 5.75 (1.30) 6.26

Table 1: Summary of validation and test EER (%). The validation EER was

obtained by Monte Carlo procedure that mimics test set conditions (SD shown

in parentheses). The test EER was determined by the KBOC organizers using

score submission files. Hidden layer sizes of neural network models are shown

in braces.
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Systems 8 and 14: CAE with hidden layer of dimension 200 and regulariza-

tion weight λ = 0.5.

System 9: Ensemble mean score of systems 3, 4, and 5, which have low score

correlations. The correlation between scores of systems 3 and 4 is 0.665,

the lowest of any pair that utilized SD score normalization.

System 10: Ensemble mean score of systems 1-8, which all use SD score nor-

malization.

System 15: Ensemble mean score of systems 11-14, which use min/max score

normalization.

Additionally, systems 1-10 used SD score normalization, and systems 11-15 used

min/max score normalization.

The resulting validation and test EERs of the fifteen systems submitted to

the KBOC are shown in Table 1. The test EERs were determined by the KBOC

organizers, as the ground truth labels of the query samples remained hidden

from competition participants. Systems 1-10, which used SD score normaliza-

tion, generally obtained lower EERs than systems 11-15, which used min/max

score normalization. Systems 9 and 15, both ensembles, achieved a lower EER

on the test set than any individual member in the ensemble. This is not the

case for system 10, which is an ensemble of systems 1-8. Systems 5, 7, and 8

show a significant decrease in performance from the validation EER, suggesting

overfitting to the development set due to the chosen hyperparameters.

8. Discussion

8.1. Effects of keystroke alignment

Bours and Komanpally [3] outlined three different scenarios that can occur

as a result of typing fixed text, such as password entry:

1. The string that was typed does not match the target string.
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2. The string that was typed matches the target string, but contains correc-

tions due to typing errors.

3. The string that was typed matches the target string without making cor-

rections. This is the most commonly assumed scenario in keystroke bio-

metrics, such that the query keystroke sequences exactly match the tem-

plate sequence.

Bours and Komanpally [3] considered scenario 2, in which sequences could con-

tain extra keystrokes, such as Backspace, due to typing errors. They concluded

that system performance generally increased as a result of lower FTC and more

data being available. However, their work did not utilize keystrokes outside of

the target sequence (.tie5Roanl), as the data was simulated from the fixed-text

dataset in Killourhy and Maxion [15] which assumed scenario 3. The KBOC

dataset instead reflects scenario 1, in which the string that was typed approxi-

mately matches the target string.

In order to further reduce the FTC rate from scenario 2, typed strings that

closely match, but slightly differ from, the target string may be retained (sce-

nario 1). The KBOC dataset reflects this, as only case-insensitive matches to

the target string were required. This resulted in differing keystroke sequences,

and to handle these differences, a keystroke alignment technique was developed.

To determine the effect of keystroke alignment, the method proposed in this

work is compared to the benchmark alternatives described in Section 3.2:

Discard: Discard modifier keys, comparing only character keys.

Truncate: Truncate sequences to the length of the shortest sample.

Table 2 shows the effects of keystroke alignment using a Manhattan distance

detector and SD score normalization. The best performance is achieved using

the keystroke alignment method. Discarding modifier keys obtains the worst

performance, suggesting that the use of modifier keys plays an important role

in keystroke biometrics. Truncating sequences to be of equal length results in

a slightly higher EER than keystroke alignment. Truncation causes different
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Discard Truncate Align

Validation 10.05 (1.44) 6.95 (1.17) 6.95 (1.17)

Test 9.18 7.33 6.53

Table 2: EER (%, SD in parentheses) obtained using different keystroke

alignment methods with a Manhattan detector and SD score normaliza-

tion. Discard=discard modifier keys, Truncate=truncate the template and

query keystroke sequences to the shortest template, Align=keystroke alignment

method described in Section 3.

features to be compared to each other for sequences of differing length. For

example, if the template begins with Shift, and the query begins with T, the

Shift duration feature will correspond to the T duration feature. This has an

adverse effect if the query sample is genuine. However, if the query sample is an

impostor, the mismatched features may generally have greater distances than

the aligned features, improving overall performance. Note that the validation

EERs of the truncation and alignment methods are equal since the length of

the samples in the development set did not differ within any of the 10 subjects.

8.2. Effects of score normalization

To determine the effects of score normalization, the EER is determined using

each normalization method with a Manhattan detector and keystroke alignment.

Table 3 contains the results, and Figure 4 shows the resulting score distributions.

The unnormalized scores perform significantly worse than either min/max or

SD normalization, while SD normalization achieves the best performance. The

unnormalized scores of the test set appear to have a unimodal distribution. The

min/max normalized scores appear bimodal at 0 and 1 due to the presence of

0 and 1 scores for each subject. This effect is not present in the SD normalized

scores, which appear to have a trimodal distribution with peaks at 0 and above

the (presumably) expected genuine and impostor scores. Score normalization

can have a significant effect on system performance and remains an ongoing

24



None Min/max SD

Validation 18.40 (1.90) 7.55 (0.96) 6.95 (1.17)

Test 21.20 10.43 6.53

Table 3: EER (%, SD in parentheses) obtained using different score normaliza-

tion methods with a Manhattan detector and keystroke alignment.
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Figure 4: The effects of score normalization using a Manhattan distance

anomaly detector: unnormalized (left), min/max normalization (middle), SD

normalization (right). Min/max normalization is sensitive to outliers; SD nor-

malization is not.

area of research [27]. System performance, as measured by either the global or

subject EER, is affected by score normalization in three different ways.

First, score normalization places the scores from multiple anomaly detectors

on the same scale for the purpose of score-level classifier fusion [12]. Members

of an ensemble may correspond to different models for a single modality or to

different modalities. Normalization ensures that the scores for each anomaly

detector are equally weighted or combined in a way that reflects the relative

performance of each underlying model.

Second, score normalization places the scores from different subjects on the

same scale. This is only relevant for performance metrics derived from a sin-

gle global threshold, such as the global ROC curve and global EER. As the
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score distributions of different subjects vary, a single global threshold may cor-

respond to vastly different FAR and FRR for each subject. To achieve similar

FAR and FRR for each subject with a global threshold, the subject scores must

be normalized. Score normalization, in this sense, does not greatly affect the

subject EER which is based on subject-specific thresholds that vary indepen-

dently. Specifically, the min/max score normalization described in Section 6.2

results in exactly the same subject EER since the shape of the score distribution

for each subject is preserved.

Finally, score normalization can reshape the score distribution within a single

subject. This can have the effect of being robust to sample outliers and lead to a

better separation of genuine and impostor scores. Like tanh normalization [12],

the SD score normalization described in this work is robust to sample outliers,

whereas min/max score normalization is sensitive to outliers.

9. Conclusions and future work

The time between data collection sessions for each subject ranged from less

than a day to several months, with an average interval of 1 month. This captured

a wide range of variability in typing behavior. Despite this, the best system

developed in this work (system 6) remained robust over long intervals, as noted

in Morales et al. [29], having the lowest decrease in performance when testing

query samples collected 2 months after the template (5.09% EER) compared to

those collected 4 months after the template (5.10% EER). The relatively small

decrease in performance of all systems evaluated in the KBOC (the greatest

being a 7% relative increase [29]) may also be attributed to the stabilization of

subjects’ templates. Keystroke sequences have been shown to converge towards

a total profile, i.e., a stationary feature distribution, with the number of typing

repetitions [25]. First and last names are likely practiced many times by the

genuine subjects, each template having reached the subject’s total profile.

Manhattan distance is arguably the simplest anomaly detector out of the

fifteen systems evaluated in this work since it has no free parameters, yet it
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achieved the lowest EER on the test dataset of 5.32%. Since feature normal-

ization scales the features by their SD, Manhattan distance in this work is

actually similar to the scaled Manhattan distance on the raw features. Taking

the best submission (system 6) and using min/max feature normalization yields

a validation EER of 8.55 (1.21)% and test EER of 8.60%. This result is consis-

tent with Killourhy and Maxion [15], wherein scaled Manhattan obtained the

best performance. Since the publication of Killourhy and Maxion [15], other

anomaly detectors, such as Gaussian mixture models [7, 8]7, have achieved only

marginally-better performance than the scaled Manhattan distance detector.

The relative worse performance of other systems in this work over the Manhat-

tan detector indicates overfitting to the template samples, while an increase in

test EER from validation EER indicates overfitting to the development set due

to hyperparameter selection.

Unlike other keystroke biometric datasets, such as Killourhy and Maxion

[15], the input sequences (first and last name) were unique to each subject in the

KBOC dataset. Therefore, only anomaly detection approaches were investigated

in this work, as negative data could not practically be utilized for training a

discriminative model. Future work could examine the use of negative training

data when keystroke sequences are unique to each subject and highly practiced,

as is the case in the KBOC dataset.

Lastly, like most previous works, the results is this work reflect asymptotic

system performance and may be considered forensics rather than biometrics.

Both the min/max and SD score normalization methods utilize statistics of the

empirical query score distribution, which requires having observed many query

samples. Future work should investigate online score normalization, which is

subject to the order in which genuine and impostor samples appear to the

system.

7The deep neural network and other methods in Deng and Zhong [7, 8] utilize negative

data for training.
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