
Integer Factorization with a Neuromorphic Sieve
John V. Monaco and Manuel M. Vindiola

U.S. Army Research Laboratory
Aberdeen Proving Ground, MD 21005

Email: john.v.monaco2.civ@mail.mil, manuel.m.vindiola.civ@mail.mil

Abstract—The bound to factor large integers is dominated by
the computational effort to discover numbers that are smooth,
typically performed by sieving a polynomial sequence. On a
von Neumann architecture, sieving has log-log amortized time
complexity to check each value for smoothness. This work
presents a neuromorphic sieve that achieves a constant time
check for smoothness by exploiting two characteristic properties
of neuromorphic architectures: constant time synaptic integration
and massively parallel computation. The approach is validated
by modifying msieve, one of the fastest publicly available integer
factorization implementations, to use the IBM Neurosynaptic
System (NS1e) as a coprocessor for the sieving stage.

I. INTRODUCTION

A number is said to be smooth if it is an integer composed
entirely of small prime factors. Smooth numbers play a critical
role in many interesting number theoretic and cryptography
problems, such as integer factorization [6]. The presumed
difficulty of factoring large composite integers relies on the
difficultly of discovering many smooth numbers in a polyno-
mial sequence, typically performed through a process called
sieving. The detection and generation of smooth numbers
remains an ongoing multidisciplinary area of research which
has seen both algorithmic and implementation advances in
recent years [2].

This work demonstrates how current and near future neuro-
morphic architectures can be used to efficiently detect smooth
numbers in a polynomial sequence. The neuromorphic sieve
exploits two characteristic properties of neuromorphic archi-
tectures to achieve asymptotically lower bounds on smooth
number detection, namely constant time synaptic integration
and massively parallel computation. Sieving is performed by
a population of leaky integrate-and-fire (LIF) neurons whose
dynamics are simple enough to be implemented on a range of
current and future architectures. Unlike the traditional CPU-
based sieve, the factor base is represented in space (as spiking
neurons) and the sieving interval in time (as successive time
steps). Integer factorization is achieved using a neuromorphic
coprocessor for the sieving stage, alongside a CPU.

II. INTEGER FACTORIZATION

Integer factorization is presumed to be a difficult task when
the number to be factored is the product of two large primes.
Such a number n = pq is said to be a semiprime1 for primes
p and q, p 6= q. As log2 n grows, i.e., the number of bits

1Not to be confused with pseudoprime, which is a probable prime.

to represent n, the computational effort to factor n by trial
division grows exponentially.

Dixon’s factorization method attempts to construct a con-
gruence of squares, x2 ≡ y2 mod n. If such a congruence
is found, and x 6≡ ±y mod n, then gcd (x− y, n) must be
a nontrivial factor of n. A class of subexponential factoring
algorithms, including the quadratic sieve, build on Dixon’s
method by specifying how to construct the congruence of
squares through a linear combination of smooth numbers [5].

Given smoothness bound B, a number is B-smooth if it does
not contain any prime factors greater than B. Additionally, let
v =

[
e1, e2, . . . , eπ(B)

]
be the exponents vector of a smooth

number s, where s =
∏

1≤i≤π(B) p
vi
i , pi is the ith prime, and

π (B) is the number of primes not greater than B. With a set of
π (B)+1 unique smooth numbers S =

{
s1, s2, . . . , sπ(B)+1

}
,

a perfect square can be formed through some linear combina-
tion of the elements of S, y2 =

∏
si∈S si. The reason for this is

that there exists at least one linear dependency among a subset
of the π (B)+1 exponents vectors that contain π (B) elements
each. Gaussian elimination or block Lanczos algorithm can be
used to uncover this linear dependency [4].

Smooth numbers are detected by sieving a polynomial
sequence. Sieving relies on the fact that for each prime p, if
p | f (x) then p | f (x+ ip) for any integer i and polynomial
f . To sieve the values f (x), for 0 ≤ x < M , on a von
Neumann architecture, a length M array is initialized to all
zeros. For each polynomial root r of each prime p in the factor
base, ln p is added to array locations r+ip for i = 0, 1, . . . ,Mp .
This step can be performed using low precision arithmetic,
such as with integer approximations to ln p. After looping
through each prime in the factor base, array values above a
certain threshold will correspond to polynomial values that
are smooth with high probability2. This process is referred to
hereafter as CPU-based sieving.

Due to errors resulting from low precision arithmetic, some
of the array values above the threshold will end up being not
smooth and some values that are smooth will remain below the
threshold. The threshold controls a tradeoff between the false
positive rate (FPR) and false negative rate (FNR), from which
a receiver operating characteristic (ROC) curve is obtained.
Since the actual factorizations are lost after sieving, the smooth
candidates must subsequently be factored over F , which also
serves as a definite check for smoothness. Factoring a number
with small prime factors can be done efficiently, and this effort

2By exploiting the fact that ln ab = ln a+ ln b.

ar
X

iv
:1

70
3.

03
76

8v
2

 [
cs

.N
E

]
 2

3
A

pr
 2

01
8

can be neglected as long as there are not too many false
positives [1].

The quadratic sieve [5] detects smooth numbers of the form

f (x) =
(
x+ d

√
ne
)2 − n (1)

where x = −M2 , . . . ,
M
2 −1. The factor base F contains primes

p up to B such that n is a quadratic residue modulo p, i.e.,
r2 ≡ n mod p for some integer r. This ensures that each
prime in the factor base (with the exception of 2) has two
modular roots to the equation f (x) ≡ 0 mod p, increasing
the probability that p | f (x). If F contains b primes, then at
least b+1 smooth numbers are needed to form the congruence
of squares.

It is the sieving stage of the quadratic sieve that is the focus
of this work. Sieving comprises the bulk of the computational
effort in the quadratic sieve and the relatively more complex
number field sieve (NFS) [1]. On a von Neumann architecture,
sieving requires at least 1

2M +M
∑
p∈F\2

2
p memory updates

where F \ 2 is the set of factor base primes excluding 2.
Given likelihood u−u of any single polynomial value being
smooth, where u = 1

2
lnn
lnB , an optimal choice of B is

exp
(

1
2

√
lnn ln lnn

)
[1]. This yields a total runtime of B2,

where the amortized time to sieve each value in the interval
is ln lnB.

III. NEUROMORPHIC SIEVE

The neuromorphic sieve represents the factor base in space,
as tonic spiking neurons, and the sieving interval in time
through a one-to-one correspondence between time and the
polynomial sequence. Let t ≡ (x− xmin), where t is time, x
is the sieving location that corresponds to t, and xmin is the
first sieving value. Then polynomial values can be calculated
by f (x) = f (t+ xmin). Each tonic neuron corresponds to a
prime (or a power of a prime) in the factor base and spikes
only when it divides the current polynomial value. If enough
neurons spike at time t, then f (x) is likely smooth since each
neuron represents a factor of f (x). This formulation reverses
the roles of space and time from the CPU-based sieve, in which
the sieving interval is represented in space, as an array, and a
doubly nested loop iterates over over primes in the factor base
and locations in the sieving interval.

Construction of the neuromorphic sieve is demonstrated
through an example using the semiprime n = 91, quadratic
polynomial f(x) =

(
x+ d

√
91e
)2 − 91, and sieving interval

x = −5, . . . , 4. The smoothness bound is set to B = 5. This
creates a prime factor base F = {2, 3, 5}, the primes up to B
such that the Legendre symbol

(
n
p

)
= 1, i.e., n is a quadratic

residue modulo each of the primes in the factor base. Sieving
is also performed with prime powers, pe for e > 1, that do not
exceed the magnitude of the polynomial, namely 32, 33, and
52. Powers of 2 are not included since they do not have any
modular roots to the equation f (x) ≡ 0 mod 2e for e > 1.

To achieve a constant-time check for smoothness, a spiking
neural network is composed of three layers that form a tree

30 32 33
2 35

2 51 54 516
2 524

2

S(t)

Excitatory

Inhibitory

20

ln 2

33
3 314

3

ln 3 ln 32 ln 33 ln 5 ln 52

Fig. 1: Example neuromorphic sieve network. Top layer con-
tains tonic spiking neurons; middle layer selects the highest
prime power; bottom layer performs the test for smoothness.

structure (Figure 1). The top layer contains tonic spiking neu-
rons for each prime in the factor base as well as prime powers,
up to the magnitude of the polynomial. The middle layer
selects the highest prime power that divides the polynomial
value. The bottom layer contains a single neuron that performs
a test for smoothness by integrating the log-weighted factors.
The middle and bottom layers are stateless, while the dynamics
in the top layer encode successive polynomial values.

For each modular root r of each prime power pe (including
factor base primes, for which e = 1), designate a neuron
that will spike with period pe and phase r (Figure 1, top
layer, given by per, where subscripts denote the modular root).
Due to the equivalence between t and f (x), this neuron will
spike only when pe|f (x). It is also the case that if pe|f (x)
then pe|f (x+ ipe) for any integer i, thus only tonic spiking
behavior for each modular root is required.

The tonic spiking neurons are connected through excitatory
synapses to a postsynaptic neuron that spikes if either modular
root spikes, i.e., if pe|f (x) for modular roots r1 and r2 of
prime pe (Figure 1, middle layer). Using a LIF neuron model,
this behavior is achieved using synapse weights of the same
magnitude as the postsynaptic neuron threshold. Inhibitory
connections are formed between the prime powers in the top
layer and lower prime powers in the middle layer so that higher
powers suppress the spiking activity of the lower powers.
This ensures that only the highest prime power that divides
the current polynomial value is integrated by the smoothness
neuron (Figure 1, bottom layer). Synapse connections to the
smoothness neuron are weighted proportional to ln pe. The
smoothness neuron compares the logarithmic sum of factors
to threshold ln f (x) to determine whether f (x) can be com-
pletely factored over the neurons that spiked.

Figure 2 depicts neuron activity of the top and bottom
layers over time. Activity from tonic neurons 30 and 323
is suppressed by neuron 333 at time t = 3, which ensures
only ln 33 is integrated by the smoothness neuron. A similar
situation occurs at time t = 5. The smoothness neuron
spikes at times {3, 4, 5, 6} to indicate that polynomial values
{−27,−10, 9, 30} are detected as smooth3.

3The −1 is treated as an additional factor and is easily accounted for during
the linear algebra stage [1].

0 1 2 3 4 5 6 7 8 9

­5 ­4 ­3 ­2 ­1 0 1 2 3 4

­66 ­55 ­42 ­27 ­10 9 30 53 78 105

33
2

51

20

f (x)

35
2

54

x

S(t)

30

32

t

33
3

314
3

516
2

524
2

To
ni

c
sp

ik
in

g
ne

ur
on

s

Fig. 2: Neuromorphic sieve example. The smoothness neuron
S spikes when smooth values are detected. Active neurons
on each time step are shown in black and tonic neurons
suppressed by higher prime powers are shown in gray.

IV. TRUENORTH IMPLEMENTATION

The TrueNorth architecture employs a digital LIF neuron
model given by

V (t) = V (t− 1) +
∑
i

Ai (t− 1)wi + λ (2)

where V (t) is the membrane potential at time t, Ai (t) and
wi are the ith spiking neuron input and synaptic weight,
respectively, and λ is the leak [3]. The neuron spikes when
the membrane potential crosses a threshold, V (t) ≥ α, after
which it resets to a specified reset membrane potential, R.
Each neuron can also be configured with an initial membrane
potential, V0. This behavior is achieved using a subset of the
available parameters on the TrueNorth architecture [3].

For each polynomial root r of each prime power pe (in-
cluding factor base primes, i.e., e = 1), a tonic spiking
neuron is configured with period pe and phase r, spiking
only when pe | f (t+ xmin). This is accomplished by setting
α = pe, V0 = − (r + 1− xmin) mod pe, and λ = 1.
Tonic spiking neurons are configured for prime powers up
to 218, the maximum period that can be achieved by a single
TrueNorth neuron with non-negative membrane potential (α is
an unsigned 18-bit integer). Tonic neurons are connected to the
middle layer (factor neurons) through excitatory and inhibitory
synapses with weights to invoke or suppress a spike.

TrueNorth implements low-precision synaptic weights
through shared axon types. Each neuron can receive inputs
from up to 256 axons, and each axon can be assigned one of
four types. For each neuron, axons of the same type share a 9-
bit signed weight. Thus, there can be at most 4 unique weights
to any single neuron, and all 256 neurons on the same core

must share the same permutation of axon types. This constraint
requires the smoothness neuron weights to be quantized.

Four different weight quantization strategies are evaluated:
regress fits a single variable regression tree, i.e., step function,
with 4 leaf nodes, to the log factors; inverse fits a similar
regression tree using a mean squared error objective function
with factors weighted by their log inverse. This forces quan-
tized weights of smaller, frequent factors to be more accurate
than large factors; uniform assigns each factor a weight of
1, thus the smoothness neuron simply counts the number of
factors that divide any sieve value; integer assigns each factor
a weight equal to the log factor rounded to the nearest integer.

The four quantization strategies are summarized in Figure
3a. Using only integer arithmetic, the integer strategy is
optimal as it most closely approximates the log function. The
uniform strategy is a worst case in which only binary (0 or 1)
weights are available. Note that only the regression, inverse,
and uniform strategies, which have at most 4 unique weights,
are able to run on TrueNorth. The integer strategy exceeds the
limit of 4 unique weights to any single neuron, thus is not
compatible with the architecture.

A single neuron S performs the smoothness test by integrat-
ing the postsynaptic spikes of the weighted factor neurons.
The smoothness neuron is stateless and spikes only when
tonic spiking neurons with sufficient postsynaptic potential
have spiked on each time step. The stateless behavior of the
smoothness neuron is achieved by setting α = 0, R = 0,
membrane potential floor to 0, reset behavior κ = 1, and
λ = τ , where τ is a smoothness threshold. Postsynaptic
spiking behavior is given by

S (t+ 1) =

{
1 if

∑
Ai (t)wi ≥ τ

0 otherwise
(3)

where wi and Ai (t) are the weight and postsynaptic spiking
activity of the ith factor neuron, respectively. TrueNorth is
a pipelined architecture, and the postsynaptic spikes from the
tonic spiking neurons at time t are received by the smoothness
neuron at time t+2. As a result, the smoothness neuron spikes
when f (t+ xmin − 2) is likely smooth.

V. RESULTS

We modified msieve4 to use the IBM Neurosynaptic Sys-
tem (NS1e) [3] for the sieving stage of integer factorization.
The NS1e is a single-chip neuromorphic system with 4096
cores and 256 LIF neurons per core, able to simulate a million
spiking neurons while consuming under 100 milliwatts at a
normal operating frequency of 1 KHz. msieve is a highly
optimized publicly available implementation of the multiple
polynomial quadratic sieve (MPQS, a variant of the quadratic
sieve) and NFS factoring algorithms. The core sieving pro-
cedure is optimized to minimize RAM access and arithmetic
operations. Sieving intervals are broken up into blocks that fit
into L1 processor cache. The host CPU used in this work is
a 2.6GHz Intel Sandy bridge, which has an L1 cache size of

4msieve version 1.52, available at https://sourceforge.net/projects/msieve/.

https://sourceforge.net/projects/msieve/

64KB. Thus, a sieving interval of length M = 217 would be
broken up into two blocks that each fit into L1 cache.

Results are obtained for n ranging from 32 to 64 bits
in increments of 2, with 100 randomly-chosen p and q of
equal magnitude in each setting for a total of 1700 integer
factorizations. This range was chosen to limit the number
of connections to the smoothness neuron to below 256, as
topological constraints are not addressed in this work. For
each n, B is set to exp

(
1
2

√
lnn ln lnn

)
. The factor base size

b ranges from 18 for 32-bit n to 119 for 64-bit n. Including
prime powers, this requires 93 tonic spiking neurons for 32-
bit n and 429 tonic spiking neurons for 64-bit n, having 47
and 215 connections to the smoothness neuron, respectively.
The sieving interval M is set to 217, large enough to detect
b+1 B-smooth numbers in all but 5 cases in which a sieving
interval of length 218 is used.

The factor base primes for each n are determined by
msieve and then used to construct the neuromorphic sieve
on the TrueNorth architecture, as described in Section IV.
Polynomial roots of the prime factors are calculated efficiently
by the Tonelli-Shanks algorithm, and roots of prime powers
are obtained through Hensel lifting. The resulting network is
deployed to the NS1e, which runs for M + 2 time steps.
On each time step, if a smooth value is detected, a spike is
generated and transmitted to the host which then checks the
corresponding polynomial value for smoothness.

Figure 3 summarizes the results. ROC curves obtained using
each quantization strategy for 64-bit n are shown in Figure 3b.
The inverse strategy, which has a 0.525±0.215% equal error
rate (EER), performs nearly as well as the optimal integer
strategy having a 0.318±0.220% EER. Results for the integer
strategy are obtained by integrating the bottom layer of the
neuromorphic sieve off of the TrueNorth chip.

Figure 3c shows the number of clock cycles per sieve
value as a function of log2 n (bits). This metric remains
constant for the neuromorphic sieve, which performs a test
for smoothness within one clock cycle using any quantization
strategy. CPU cycles were measured using differences of
the RDTSC instruction around sieving routines on a single
dedicated core of the host CPU.

Figure 3d shows the FPR of each quantization strategy at
the point on the ROC curve where true positive rate (TPR)
equals the CPU TPR. For all n, and given the same level
of sensitivity, the neuromorphic sieve with binary weights
(uniform strategy) demonstrates equal or higher specificity,
i.e., lower FPR, than the CPU-based sieve and significantly
lower FPR using quaternary weights (regress and inverse
strategies). The higher-precision integer weights performed
marginally better than quaternary weights.

VI. CONCLUSION

This work highlights the ability of a neuromorphic system to
perform computations other than machine learning. A O (1)
test for detecting smooth numbers with high probability is
achieved, and in some cases is significantly more accurate
than a CPU-based implementation which performs the same

100 101 102 103 104 105 106

Factor

0

2

4

6

8

10

12

14

16

18

W
ei

gh
t

Uniform
Regress
Inverse
Integer

(a) Weight quantization.

10­4 10­3 10­2 10­1 100

FPR

10­4

10­3

10­2

10­1

100

F
N

R

Uniform
Regress
Inverse
Integer

(b) 64-bit n ROC curves.

32 36 40 44 48 52 56 60 64
Bits

0

1

2

3

4

5

6

7

8

9

10

C
lo

ck
 c

yc
le

s/
si

ev
e

va
lu

e

CPU
Neuromorphic

(c) Clock cycles/sieve value vs n bits.

32 36 40 44 48 52 56 60 64
Bits

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
P

R

CPU Uniform
Regress
Inverse
Integer

(d) FPR given CPU TPR vs n bits.

Fig. 3: Experimental results. Bands show 95% confidence
intervals obtained over 100 different n of equal magnitude.

operation in O (ln lnB) amortized time. Despite this, the NS1e
has a normal operating frequency of 1 KHz and wall clock
time is only asymptotically lower than that of the CPU. Future
high-frequency neuromorphic architectures may be capable
of sieving large intervals in a much shorter amount of time.
How such topological and precision constraints determine the
accuracy of these architectures is an item for future work.

It is also worth noting that since the NS1e is a digital
architecture, at the hardware level it does not achieve constant
time synaptic integration. The ability to perform constant time
addition is promised only by analog architectures that exploit
the underlying physics of the device to compute, for example
by integrating electrical potential (memristive architecture) or
light intensity (photonic architecture).

REFERENCES

[1] Richard Crandall and Carl Pomerance. Prime numbers: a computational
perspective, volume 182. Springer, 2006.

[2] Andrew Granville. Smooth numbers: computational number theory and
beyond. Algorithmic number theory: lattices, number fields, curves and
cryptography, 44:267–323, 2008.

[3] Paul A Merolla et al. A million spiking-neuron integrated circuit with a
scalable communication network and interface. Science, 345(6197):668–
673, 2014.

[4] Peter L Montgomery. A block lanczos algorithm for finding dependencies
over gf (2). In Advances in cryptology–EUROCRYPT’95, pages 106–120.
Springer, 1995.

[5] Carl Pomerance. The quadratic sieve factoring algorithm. In Advances
in cryptology, pages 169–182. Springer, 1984.

[6] Carl Pomerance. The role of smooth numbers in number theoretic algo-
rithms. In Proc. Internat. Congr. Math., Zürich, Switzerland, volume 1,
pages 411–422, 1994.

	I Introduction
	II Integer Factorization
	III Neuromorphic Sieve
	IV TrueNorth Implementation
	V Results
	VI Conclusion
	References

