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ABSTRACT

Digital currencies, such as Bitcoin, o�er convenience and security to criminals operating in the black marketplace.
Some Bitcoin marketplaces, such as Silk Road, even claim anonymity.1 This claim contradicts the �ndings in
this work, where long term transactional behavior is used to identify and verify account holders. Transaction
features, such as timestamp, coin-�ow, and connectivity, contribute to revealing the account-holder's identity.
The time between successive transactions is the result of low-frequency e�ects, such as the desire purchase an
item and daily schedule, as well as higher frequency e�ects, such as hardware and network latency. In addition to
transaction time-intervals, dynamic network features of each transaction, such as coin �ow and number of edge
outputs and inputs, can also be used to identify account-holders. In this paper, we propose novel methodology
for identifying and verifying Bitcoin users based on the observation of Bitcoin transactions over time. The
behavior we attempt to quantify occurs in the social band of Newell's time scale and is low-frequency compared
to other behavioral biometrics. A subset of Blockchain 230686 is analyzed, selecting users that initiated between
100 and 1000 unique transactions per month for at least 6 di�erent months. This dataset shows evidence of
being nonrandom and nonlinear, thus a dynamical systems approach is taken. Identi�cation and veri�cation
accuracies are obtained using monthly Bitcoin samples. Outgoing transactions, as well as both outgoing and
incoming transactions, are considered. Results show an inherent lack of anonymity by exploiting patterns in
long-term transactional behavior.
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1. INTRODUCTION

You tunnel your tra�c through a chain of anonymous proxy servers and begin doing business on the
black market for the day. Illegal information is bought, sold, and traded with other black hats within
your network. You've been using the digital currency Bitcoin to do business on the black market for
several months now, utilizing a dedicated set of Bitcoin addresses that are in no way linked to your
identity. But, each transaction you make contains a time stamp. It must, and there is no way of
avoiding this. Over time, could these timestamps be used to reveal your identity? They might. The
time the transaction took place is in some way a result of you, your schedule, daily life and activities,
computer performance, network latency, and so on.

You also make legitimate Bitcoin transactions. You use a mutually exclusive set of Bitcoin addresses
to make legitimate purchases, possibly initiating up to several dozen transactions per day. There's
no need to hide your identity for these. In fact, you even advertise some of your Bitcoin addresses
to receive payments for private consulting jobs. It just so happens that the time at which these
transactions occur are also a natural byproduct of you and may be used to reveal your alternate
identity.

The preceding scenario is realized in this work, as timing information alone is shown to discriminate between
users in the Bitcoin network. When other transaction information is utilized, the ability to discriminate between
users increases further.

Traditionally, behavioral biometrics rely on a rich stream of information to identify or authenticate an indi-
vidual. Well-de�ned methodology exists for keystroke, mouse, gait, mobile, and others.2 Performance generally
decreases as one moves up in Newell's Time Scale of Human Action.3,4 This work considers events that occur in
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the social band by comparing month-long samples that contain several hundred Bitcoin transactions. The ran-
dom time-interval (RTI) biometric, along with dynamic network features, are utilized. The RTI is the sequence
of time-intervals between successive event timestamps. Given a series of timestamps ti, the RTI can be obtained
by taking

yi = [t1 − t0, t2 − t1, . . . , tn+1 − tn]

The timestamps could arise from any timed recurring event. Sources of RTI could be key-blows5 (where a single
key is pressed), web history,4 or mouse motion.4 A nonlinear dynamical systems approach has successfully been
applied to the RTI biometric, and a similar approach is taken here.

The purpose of this work is to demonstrate the following:

1. Bitcoin transaction histories from the same user are correlated and can be used to reveal that user's identity.

2. The RTI biometric relies on the observation of timestamps from a recurring event. Even if all other
information is hidden or encrypted, the timestamps alone may be enough to identify a user. This is
signi�cant because the RTI biometric is truly ubiquitous.

3. Some proposed Bitcoin transaction features are more useful than others in discriminating between users.

Several properties of Bitcoin transactions are also discovered through statistical hypothesis testing. The data
are shown to be largely nonrandom and nonlinear, justifying the nonlinear dynamical systems approach taken
in this work.

This paper is organized as follows. Sections 2 and 3 provide background information pertaining to the
Bitcoin network and related work, respectively. In Section 4, the methodology for preprocessing, phase space
reconstruction, and classi�cation is described. Experimental results are presented in Section 5. Statistical
hypothesis testing for nonrandom and nonlinear behavior is performed in Section 6, as well as a preliminary
evaluation of the stationarity of the data. Conclusions are drawn in Section 7, and Appendices A and B contain
background information for some of the mathematical concepts.

2. THE BITCOIN NETWORK

Bitcoin∗ was �rst proposed in 20086 and implemented in 2009. It was originally designed to solve the double-
spending problem and eliminate the central authority responsible for verifying the legitimacy of online trans-
actions, such as in traditional credit and banking systems. What makes the Bitcoin network especially unique
is that its entire transaction history is publicly available, giving one the opportunity to analyze economic and
spending behavior.7 The network operates in a peer-to-peer (P2P) fashion, where clients collectively verify the
legitimacy of each transaction.

A Bitcoin address is similar to a bank account number. Anyone can generate an unlimited number of Bitcoin
addresses; thus it is common for users to control multiple addresses. A Bitcoin transaction is a many-to-many
function, able to have multiple inputs and outputs. Transactions are speci�ed by the input and output addresses,
the bitcoin value of each output address, and the time the transaction takes place. The cumulative bitcoin value
from the inputs must be distributed to the outputs. Therefore, it is common for a sender to use an output
address to receive change from a transaction. These addresses are normally referred to as change addresses8.
For a transaction to be veri�ed by the network, the sender must prove ownership of all the bitcoins associated
with the input addresses. After the transaction is veri�ed, the bitcoins are distributed to the output address as
speci�ed. Figure 1 shows two transactions with multiple outputs and multiple inputs, respectively.

A Bitcoin transaction can be interpreted as a behavioral event initiated on behalf of the sender†. The sender
could be a single person, organization, or a business. Additionally, a transaction could be made directly or be the

∗The proper noun Bitcoin refers to the peer-to-peer network, while lowercase bitcoin refers to the individual unit of
currency.
†The terms user, sender, and identity are used interchangeably. They all refer to the owner of a set of Bitcoin addresses,

whether a person or organization.



Figure 1: Bitcoin transactions with multiple outputs and multiple inputs. The total value of the inputs must be
distributed to the outputs.

consequence of a computer program. In either scenario, the event occurs at some de�nite point in time and may
be observed publicly. This is in contrast to many other behavioral biometrics that remain private by default. It
is also an event-driven biometric, in contrast to those that are observed through a sensor with a �xed sampling
rate, such as gait and eye movement.9,10 When dealing with data from a sensor with a �xed sampling rate, user
actions must be inferred by segmenting the data, such as identifying footsteps in gait or �xations and saccades
in eye movement.

The anonymity that could potentially be achieved using Bitcoin is perhaps only a side e�ect of the ability
to create an unlimited number of addresses that act similarly to bank account numbers.8 It is recommended
that users create a new address for every transaction, although many fail to do so. Additionally, multi-input
transactions can be used to link addresses to the same owner since ownership of each address must be proven
through public key cryptography. This was shown in a work where the user network was reconstructed11 from
the publicly available transaction network.

If a user follows certain protocols it may be possible to maintain some level of anonymity despite all trans-
actions being made public. As the example in the introduction demonstrates, users could maintain mutually
exclusive pools of addresses for di�erent types of business dealings, and this is the scenario considered in this
work. It is the dynamic transactional behavior of the user that we are interesting in quantifying. Over time, this
transactional behavior becomes a leakage of information and may be used to deprive a user of anonymity.

3. RELATED WORK

The RTI biometric was proposed in Ref. 5, where users were asked to repeatedly hit a single key on a keyboard.
The RTI was taken as the time-interval between successive key-blows. Without the rich set of features that is
normally used in keystroke biometrics, the author took a dynamical systems approach, where the RTI samples
were compared to each other in reconstructed phase space (RPS). With 40 users supplying 10 samples each,
and 127 time-intervals per sample, an EER as low as 5.4% was obtained with a minimum class variance SVM
(MCVSVM) classi�er.

A similar approach was used to obtain results on several publicly available datasets, including mouse move-
ment and web-browsing history.4 Results were obtained on equally-sized datasets of 60 users, with 7 samples per
user and 130 events (or 129 RTIs) per sample. Users could be identi�ed by their web-browsing history timestamps
with 16.2% accuracy. The web-browsing history samples spanned 22 days on average (a mean event frequency
of 6.8× 10−5Hz with 130 events per sample). These modest results show the potential to discriminate between
users based on low-frequency social band behavior. It is interesting to note that timestamps alone provide this
type of discrimination, which is clearly above chance prediction accuracy. The same algorithm also achieved
the highest classi�cation accuracy in the Second Eye Movements Identi�cation and Veri�cation Competition.12

An approximation of the Wald-Wolfowitz (WW) test was used to compare large samples, where the WW test
statistics were used as similarities in a kNN classi�er. Because of its computational e�ciency, the approximate
multivariate Wald-Wolfowitz (AMWW) test4 is also used in this work (see Appendix B).

A dynamical systems approach has been met with some success in other behavioral modalities, such as eye
movement,13 gait,9 and voice.14 In each, a suitable time-delay embedding is �rst determined, and samples are
compared in RPS. The primary di�erence between Refs. 9, 13, 14 and this work is that Bitcoin transaction
behavior is event-driven while eye movement, gait, and voice are all sampled from a sensor with �xed sampling
rate.



Table 1: Bitcoin transaction attributes. A transaction can be described by its timestamp, connectivity (number
of inputs and outputs to other users), and coin �ow.

Attribute Description

ti UNIX timestamp (in seconds) of the ith transaction
uouti number of unique outputs to other users
uini number of unique inputs from other users
bi bitcoin value with respect to the user (negative for loss, positive for gain)

There has also been some research from a non-biometrics perspective as to the level of anonymity that can be
obtained in the Bitcoin network. Using network structure alone, it is possible to cluster addresses belonging to
the same user.11 This creates a user network, where vertices represent ownership of a set of addresses belonging
to the same user, and edges represent transactions between users. This is only an approximation of the true user
network, as it relies on the proof-of-ownership in multiple-input transactions. It fails for the scenario presented
in the Introduction, in which users maintain mutually exclusive sets of addresses. Other heuristics for attributing
multiple addresses to a single user have been proposed. In Ref. 8, the use of change addresses is exploited to
help resolve address ownership. Creating a user network is a necessary preprocessing step to the methods in this
work. The methods proposed in this work may also be used as a heuristic to merge nodes in the user network.

4. METHODOLOGY

The raw dataset used in this work is a subset of the user network compiled by Ivan Brugere‡, using tools modi�ed
from Martin Harrigan.11 Blockchain 230686 includes Bitcoin transactions made up to April 7, 2013, a network
of 6.3M vertices and 37.4M edges. From the raw dataset, only users with between 100 and 1000 unique outgoing
transactions per month, for at least separate 6 months (not necessarily consecutive), are kept. This yields 61
users, and the most recent 6 month-long samples for each user are kept, for a total of 366 samples. Restricting
sample sizes to be within the same order of magnitude avoids discrimination by transaction frequency alone.

4.1 Transaction features

As a �rst preprocessing step, the transaction histories are transformed into the compact representation shown
in Table 1. The attributes in Table 1 capture both timing information (ti) and network information (uouti ,
uini , and bi) of a single transaction. That is, each transaction can be described by the timestamp, number of
inputs/outputs to other users, and cumulative bitcoin value with respect to the user. For transactions with 0
outputs and a positive number of inputs, the bitcoin value would be strictly positive. This represents a payment
to the user. Similarly, for transactions with 0 inputs and a positive number of outputs, the bitcoin value would
be strictly negative, representative of a payment sent from the user. A transaction with 0 outputs and 0 inputs
would have a 0 coin value, and represents a self-loop, i.e a transaction between addresses belonging to the same
user. This may occur if a user chooses to consolidate bitcoin to a single address, or distribute bitcoin to multiple
addresses.

From the representation in Table 1, we can extract several features that may characterize some aspect of
transaction behavior over time. Additionally, we may consider only outgoing transactions (where the number
of outputs is nonnegative, i.e. uouti > 0) or both outgoing and incoming transactions from a user. Outgoing
transactions capture the behavior of the user, since it is the user who initiates the transaction, while outgoing
and incoming transactions together capture both the user's behavior and behavior of the user's clientèle. The
following 6 features are extracted from outgoing and both outgoing and incoming transactions to obtain 12 time
series for each monthly sample:

Random time-interval (RTI) The time interval, in seconds, between successive transaction timestamps. Val-
ues are always nonnegative and represent the velocity of transaction behavior. The RTI is calculated as
follows.

‡http://compbio.cs.uic.edu/data/bitcoin/



RTIi = ti − ti−1

Hour of day (HOD) The hour of the day {1...24} that the transaction took place. This may capture schedul-
ing behavior without the �ner granularity of second-precision. Values increase in a step-wise fashion
(non-decreasing from the start to end of each day). The HOD can be determined by performing integer
division (// operator) on the timestamp followed by a modulus to get the time of day.

HODi = ti//3600 mod 24

Time of hour (TOH) The TOH is the number of seconds elapsed since the start of the hour, calculated by
taking a modulus of the transaction timestamp.

TOHi = ti mod 3600

Time of day (TOD) The TOD is the number of seconds elapsed since the start of the day. This is similar to
the HOD, with �ner granularity. The TOD is calculated by taking a modulus of the timestamp.

TODi = ti mod 86400

Coin �ow (CF) The user's bitcoin value throughput may be characterized by the coin �ow. The coin �ow is
the cumulative bitcoin value of the inputs (excluding the user) minus the cumulative bitcoin value of the
outputs (again, excluding the user). For loss, it is negative, and for gain, it is positive. In a self loop,
where a transaction is made between addresses belonging to the same user, the CF would be 0. The CF is
negative for strictly outgoing (no self loops) transactions and positive for strictly incoming transactions

CFi = bi

Input/output balance (IOB) The number of inputs from other users minus the number of outputs to other
users. Self-loops would have an IOB of 0, as would an outgoing transaction with one output to another
user and change returned to the sending user. Note that this considers edges to other users and not other
addresses.

IOBi = uini − uouti

With each feature taken on the month-long transaction samples, we end up with 12 time series for each sample (6
features for outgoing transactions only and 6 features for outgoing and incoming transactions). In a sample with
n outgoing transactions, the HOD, TOH, TOD, CF , and IOB time series would be of length n, and the RTI
would be of length n−1. In the rest of the paper, the preceding acronyms will refer to features taken on outgoing
transactions only. Features taken on both outgoing and incoming transactions are denoted by RTI(out/in),
HOD(out/in), etc, or {RTI,HOD}(out/in) to refer to several features. For example, RTI, {CF,HOD}(out/in)
refers to the RTI feature time series for outgoing transactions and the CF and HOD feature time series for
outgoing and incoming transactions.



4.2 Phase space reconstruction

This work stands on the celebrated Takens' Theorem,15 which states that a proper time-delay embedding of a one-
dimensional time series may reveal the structure of the underlying dynamical system. Time-delay embedding
requires the estimation of an embedding dimension, de, and time lag, τ , with well-researched heuristics for
determining each.16,17 For a given de and τ , the embedding procedure transforms the original time series, yi,
into a series of embedded vectors, yi:

yi = [yi, yi−τ , yi−2τ , . . . , yi−(de−1)τ ]

Embedding parameters are determined for each feature time series using the mutual information (MI) to
estimate τ and the method of false nearest neighbors (FNN) to estimate de. The procedure is as follows.
For each feature and each sample, τ and de are determined using the heuristics described below. The global
embedding parameters for each feature are then taken to be the parameters with the highest frequency, i.e. the
mode, over all samples.

The MI, given in Equation (1), serves as a good heuristic for selecting τ .

I(T ) =

N∑
n=1

P (yn, yn+T ) log2
P (yn, yn+T )

P (yn)P (yn+T )
(1)

Generally, the lag at which the �rst local minimum occurs will yield a good embedding. This ensures that the
lagged data are correlated, but not too correlated much.17 As suggested,16 in cases where there is no local
minimum up to some Tmax, τ is taken to be T where I(T )/I(0) ≈ 1

5 . We use Tmax = 10 to avoid unnecessarily
large lags.

Next, the method of FNN is used to determine embedding dimension. Put simply, two embedded vectors, yi
and yj are FNN if they are neighboring in dimension de and become distant in dimension de + 1. The correct
dimension can be determined by increasing de until the proportion of FNN falls below some threshold. This
ensures that the underlying dynamical system is unfolded and not projected into a dimension which is too small
causing an unnecessarily large number of FNN. To classify two vectors as FNN, consider the normalized increase
in distance17 when going from de to de + 1, where yNNi is the nearest neighbor to yi, and i

NN is the index of
yNNi :

R =
|yi−(de+1)τ − yiNN−(de+1)τ |

‖ yi − yNNi ‖
(2)

When R is above some threshold, Rthresh, then yi and yNNi are considered to be FNN. We use Rthresh = 15, a
value suggested to give reasonable results in many situations.17 The embedding dimension is chosen to be the
smallest de that results in less than 5% FNN. If the proportion of FNN does not fall below 5% up to demax = 10,
then de is take to be demax. An upper bound on the embedding dimension is necessary since noisy samples are
prone to high embedding dimensions.17

The densities of de and τ for the 366 RTI feature time series are shown in Figure 2. The high density at
de = 10 indicates there are many samples that desire a much higher embedding dimension, due to either noise
or an inherently high-dimensional underlying system. The embedding parameters determined for each feature
are given in Table 2. These embedding parameters are used in the rest of this paper anywhere the dataset
requires time-delay embedding. An example of the RTI time series from a randomly selected sample and the
embedding of the RTI can be seen in Figure 4. Note that the determination of embedding parameters does
not require knowing the class labels, and this can be performed as a preprocessing step before classifying an
unlabeled sample.



(a) Distribution of τ for all RTI samples. For each
sample, τ is selected where the �rst minimum of mutual
information occurs.

(b) Distribution of de for all RTI samples. For each
sample, de is selected where the proportion of FNN
drops below 5%.

Figure 2: Embedding parameter densities for RTI, using MI and FNN as criteria for parameter selection.

Table 2: Embedding parameters for each feature. Parameters are determined by choosing de and τ with the
highest frequency, using mutual information and the method of false nearest neighbors as selection criteria.

Outgoing Outgoing/Incoming
RTI HOD TOH TOD CF IOB RTI HOD TOH TOD CF IOB

de 4 4 3 4 5 10 5 4 4 4 10 10
τ 1 4 2 4 1 2 1 9 2 9 1 2

4.3 Classi�cation

The multivariate Wald-Wolfowitz test18 is an extension of the original Wald-Wolfowitz runs test,19 a nonpara-
metric test to determine whether two sets of observations originated from the same distribution. To compute
the WW statistic requires O(N3) time, although an approximation can give comparable results4 and runs in
O(nk log(Nk)), where k is the number of neighbors considered when constructing the minimum spanning tree
(MST). For a description of the AMWW, see Appendix B.

The classi�cation procedure works as follows. For a single feature time series from a query sample, the
AMWW test statistic is computed between the unlabeled query sample and the labeled reference samples. The
reference samples are ranked by their similarity to the query sample. A score for each identity is obtained by
taking the normalized rank sum of the identity samples, up to some maximum rank k. This is similar to a
traditional kNN classi�er, which simply uses the proportion of k neighboring samples for each class.

To illustrate how the score for each identity in the database is obtained, consider a small example. The RTI
feature time series is obtained for all samples, including an unlabeled query sample q. The AMWW test statistic is
calculated between q and reference samples r1, r2, r3, r4, r5 that have identities a, a, b, b, c. The AMWWmeasures
the similarity between two samples. Suppose the test statistics between the query and reference samples are
r1 = 0.1, r2 = 0.02, r3 = 1.2, r4 = 0.09, r5 = 0.04. The reference samples are ranked by the test statistics in order
of decreasing similarity to the query sample, and we get b, a, b, c, a as the rank labels. If we let k = 4, then the
scores for each identity will be b = 4+2

4+3 = 6
7 , a = 3

4+3 = 3
7 , c =

1
4 . This is because identities b and a each have 2

samples in the reference set. Therefore the maximum obtainable rank sum they can get is one sample with rank
4 and another sample with rank 3. Identity c only has one sample in the reference set and has a maximum rank



sum of 4. Anything beyond rank 4 is ignored because k = 4.

To combine multiple features, each feature is used in a separate linear-weighted classi�er as described above.
The scores from each classi�er are summed to produce a fused score for the unknown sample. A summation
of classi�er output scores is thought to be reasonable robust, especially if independence between classi�ers is
assumed.20 For identi�cation, the identity with the highest score is chosen. For veri�cation, the score of the
claimed identity is compared to a threshold.

The identi�cation and veri�cation procedure can be summarized as follows. Let si be the classi�er output
score for identity i when classifying an unknown sample.

1. Given a feature time series for an unlabeled query sample, and reference samples with corresponding
features, determine the embedding parameters using all the samples, as described in Section 4.2. Use the
embedding parameters in to embed everything.

2. Calculate the AMWW test statistic between the query sample and the reference samples. Using the test
statistics as similarity measures, determine the normalized rank sum for each identity, up to rank k. This
is the classi�er output score for each identity.

3. To combine features, perform Steps 1 and 2 for each feature. Take the sum of classi�er output scores for
each identity.

4. For classi�cation: take the identity with the maximum score as the label for the query sample.

5. For authentication: given claimed identity c, use a threshold parameter sthresh ∈ [0 . . . 1] to obtain a
veri�cation decision, where sc ≥ sthresh indicates a positive decision.

Identi�cation and veri�cation errors rates are calculated in the usual way. The identi�cation accuracy (ACC1)
is the proportion of correctly classi�ed samples. Veri�cation decisions are tallied to obtain the false acceptance
rate (FAR) and false rejection rate (FRR) for each sthresh ∈ [0 . . . 1]. The veri�cation accuracy is reported as
the equal error rate (EER), the point on the receiving operator characteristic (ROC) curve where FAR = FRR.

5. EXPERIMENTAL RESULTS

Leave-one-out cross fold validation (LOOCV) is used to obtain experimental results. Thus, for each query sample
left out, 365 samples remain in the reference set. In obtaining the ACC1, 366 samples are identi�ed. To get the
EER, 61× 61× 6 veri�cations are performed, with 61× 6 mated pairs and 61× 60× 6 non-mated pairs.

For the �rst set of experiments, k is varied from 1 to 365 for each feature of outgoing transactions only.
Results are shown in Figure 3.

Most features provide optimal identi�cation with k ≈
√
365. This is consistent with the empirical rule-of-

thumb for a traditional kNN classi�er: selecting to k to be the square root of the number of samples in the
reference set.21 Veri�cation error rates experience a similar trend, usually �nding minimum error rates with
slightly larger k. Following the rule-of-thumb, k is chosen to be 20 in all of the following results. Table 3
contains classi�cation and authentication results for each feature on outgoing and both outgoing and incoming
transactions, while Table 4 shows results for multiple features.

As seen in Table 3, RTI performs well for outgoing and both outgoing and incoming transactions. These
results are consistent with results obtained on similarly-sized RTI datasets4 with ACC1 ranging from about 30%
to 40%. The TOH is only slightly above chance, leading one to believe that the resolution at which interesting
behavior occurs is not the hour-scale, but perhaps the day-scale. The performance of all the timing features
(HOD, TOH, TOD) degrades signi�cantly when both outgoing and incoming transactions are considered to-
gether, yet the performance of the time interval feature, RTI, increases when outgoing and incoming transactions
are considered.



Figure 3: Experimental results obtained for each feature extracted from outgoing transactions only, varying
k from 1 to 365. The ACC1 and EER experience optima close to

√
365 ≈ 20, consistent with the empirical

rule-of-thumb21 in choosing k.

Table 3: Experimental results for each feature, with k = 20, obtained by a linear-weighted kNN classi�er. The
performance of RTI increases when both outgoing and incoming transactions are considered, an indication that
the user's clientèle o�ers valuable information about the identity of the user.

Outgoing Outgoing/Incoming
ACC1(%) EER(%) ACC1(%) EER(%)

RTI 30.3 22.6 31.1 17.8
HOD 25.1 24.8 3.3 49.0
TOH 4.4 48.8 3.9 47.2
TOD 21.0 27.5 12.8 38.0
CF 49.7 13.1 56.3 8.4
IOB 22.1 27.5 43.2 13.1



Table 4: Experimental results obtained for combined features in a fusion of linear-weighted kNN classi�ers with
k = 20. Items inside {·}(out/in) indicate features taken on both outgoing and incoming transactions; elsewhere
features are for outgoing transactions only.

ACC1(%) EER(%) ACC1(%) EER(%)
RTI,HOD 32.0 18.3 RTI,HOD,CF, IOB 62.0 10.1
HOD,TOH 21.3 27.9 {RTI,HOD,CF, IOB}(out/in) 65.8 9.0
TOD,CF 53.6 11.6 {CF, IOB}(out/in) 64.2 7.7
RTI,CF 60.7 12.6 RTI,IOB(out/in) 51.6 11.0
CF, IOB 54.1 11.0 RTI,HOD,IOB(out/in) 55.7 11.6

RTI,HOD, IOB 43.2 15.4 HOD,{RTI,CF, IOB}(out/in) 73.5 6.7
RTI,HOD,CF 58.5 10.7 RTI,HOD,{CF, IOB}(out/in) 76.0 6.8

With 12 di�erent features (6 features for outgoing and 6 for outgoing and incoming transactions), there are
122−1 possible ways to combine them. When several features are used in a fusion of linear weighted kNN classi-
�ers, the performance generally increases. Table 4 shows some selected results from the 122−1 feature combina-
tions. The best performance for timing-only information is seen in RTI,HOD,IOB(out/in) with 55.7% ACC1 and
11.6% EER. The coin �ow seems to be a signi�cant contributor to discriminating behavior, as performance always
increases when coin �ow is considered. The best identi�cation rate is obtained by RTI,HOD,{CF, IOB}(out/in)
with 76% accuracy, while the best veri�cation accuracy is seen in HOD,{RTI,CF, IOB}(out/in), at 6.7% EER.
Generally, timing information is more valuable if only outgoing transactions are considered, while network infor-
mation (coin �ow and input/output balance) are better indicators when both outgoing and incoming transactions
are examined.

6. TESTS FOR RANDOMNESS, NONLINEARITY, AND STATIONARITY

It is important to understand the nature of the Bitcoin dataset before attempting to build a classi�er for
identifying users. The following analysis will serve as justi�cation for the methods proposed and perhaps o�er
some insight to properties of the transaction histories. The method of surrogate data testing22 can be used to
determine whether a time series is nonrandom or nonlinear. The process is as follows. A discriminative test
statistic is �rst calculated for the original time series. The statistic is then calculated for several surrogate time
series that exhibit behavior consistent with a null hypothesis (e.g. the data is random). The original statistic is
then compared to the surrogate test statistics to determine whether the null hypothesis should be rejected. The
tests serve as a statistical proof by contradiction and, therefore, only give evidence for the alternate hypothesis.

For each sample, three di�erent tests are performed under each null hypothesis using three di�erent test
statistics: the MI, given in Equation (1), the proportion of FNN, as described in Section 4.2, and the nonlinear
prediction error (PE). The PE can be computed using the drop one out method.17,23 In this work, a variation
of the usual PE is used. See Appendix A for a description of PE calculation.

A con�dence value, ρ, is determined by a rank statistic22§. Let q0 be the statistic obtained from the original

time series, and qi be the values of the test statistic obtained from n surrogates. For a left-sided test, ρ = I{q0<qi}
n

, where I is the indicator function and I{q0 < qi} is the number of surrogates for which qi is greater than q0
(right-sided tests are calculated similarly). For a two-sided test, ρ = 2× min(I{q0<qi},I{q0>qi})

n . In all tests, H0 is
rejected with at least 90% con�dence (i.e. H0 is rejected if ρ ≤ 0.10), and 100 surrogates are generated for each
test. Each feature time series is tested for each sample on outgoing transactions only. Thus, a total of 6588 tests
are performed: 3 discriminative statistics × 6 features × 366 samples.

6.1 Test for randomness

First, consider the null hypothesis Hr
0 , that a sample shows no temporal correlation at all (i.e. yi can be

completely described by an independent and identically distributed random variable). The results of this test

§If we assumed qi followed a Gaussian distribution, then we could compute the con�dence intervals in the usual way.24

However we do not know, nor will attempt to discover the distribution of qi in each test.



Table 5: Proportion of samples that reject the null hypothesis Hr
0 , that the samples are random noise with the

same empirical distribution as the original data, at 90% con�dence. Surrogates are generated by shu�ing the
values in the original time series, and ρ is found using a rank-statistic. PE and MI are both one-sided tests and
FNN is two-sided.

f Prediction error Mutual information False nearest neighbors At least 1 All 3

RTI 0.34 0.45 0.37 0.69 0.11
HOD 0.96 1.00 0.97 1.00 0.93
TOH 0.47 0.71 0.52 0.85 0.30
TOD 0.96 1.00 0.96 1.00 0.92
CF 0.28 0.52 0.28 0.68 0.08
IOB 0.45 0.75 0.46 0.86 0.24

Avg 0.58 0.74 0.59 0.85 0.43

Table 6: Proportion of samples that reject the null hypothesis Hnl
0 , that the samples are the result of linear

stochastic process, at 90% con�dence in a two-sided test. Surrogates are generated using the AATFT algorithm
with a cuto� frequency of 0Hz, and ρ is determined by a rank-statistic.

f Prediction error Mutual information False nearest neighbors At least 1 All 3

RTI 0.23 0.31 0.36 0.61 0.06
HOD 0.78 1.00 0.96 1.00 0.74
TOH 0.25 0.66 0.53 0.82 0.16
TOD 0.79 1.00 0.95 1.00 0.74
CF 0.19 0.44 0.26 0.61 0.05
IOB 0.28 0.48 0.36 0.66 0.13

Avg 0.42 0.65 0.57 0.78 0.31

will indicate whether the data has any structure at all, or we are just dealing with uncorrelated noise. Surrogates
can be generated by random permutations of the original time series. This preserves the empirical distribution
of the time series while destroying any temporal correlation, which is consistent with the null hypothesis. An
example Hr

0 surrogate is shown in Figure 4a. Tests with PE and MI are one-sided, since the surrogates can
always be expected to have higher prediction errors and lower mutual information than the original time series.
The test with FNN is two-sided, since it is not clear whether the proportion of FNN in the surrogates would
always be less or greater than that of the original time series.

The proportion of samples for which Hr
0 is rejected for each feature is shown in Table 5. The HOD is clearly

not random, since the values must increase monotonically during each day. Other features indicate a modest
proportion of the dataset is nonrandom and probably worth exploring further. It is interesting to not that very
few CF time series pass all three tests.

6.2 Test for nonlinearity

To test for non-linearity, we let Hnl
0 be the null hypothesis that data came from a linear stochastic process

(i.e. the data is completely described its autocorrelation or power spectrum). Surrogate samples are generated
using the method of Amplitude Adjusted Truncated Fourier Transform (AATFT).25 This method preserves both
the power spectrum and amplitude distribution of the original time series, a drawback sometimes encountered
when generating surrogates with the Amplitude Adjusted Fourier Transform (AAFT). A cuto� frequency of 0Hz
is used in the algorithm. An example surrogate for Hnl

0 and the original time series are shown in Figure 4a.
Again, 100 surrogates are generated in each test, and each feature is tested for each sample in the database on
outgoing transactions only. The ρ-value is calculated using a rank statistic similar as above. All tests for Hnl

0

are two-sided, since it is not obvious whether any of the statistics calculated on the surrogate time series would
be strictly less than or greater than that of the original time series. Again, the null hypothesis is rejected in a
modest proportion of samples for each feature.



(a) Example of an original RTI time series (top) and
surrogates generated for Hr

0 (middle) and Hnl
0 (bottom).

(b) Example of an embedded RTI sample, with de = 4
and τ = 1. Only the �rst two dimensions are shown.

Figure 4: Examples of an original RTI time series, Hr
0 and Hnl

0 surrogates, and reconstructed phase space
using the embedding parameters found in Section 4.2. The Hr

0 surrogate is a random permutation, and the
Hnl

0 surrogate is generated using the AATFT.25 The amplitude distribution and spectrum of original time series
are both preserved in the AATFT surrogate, while all time correlation is destroyed in the random permutation
surrogate.

6.3 Test for stationarity

Using PE, it is of interest to determine whether the transaction data are stationary. Out-of-sample predictions
can be made by using di�erent samples for �training� and �testing� (see Appendix A). If the data are stationary,
the prediction error should remain relatively constant throughout time. If the prediction error increases or
decreases with time between samples, then the data may show signs of non-stationarity.23

For each feature on outgoing transactions, a PE matrix is calculated for each user. The PE is calculated for
every combination of sample pairs within each user (6 × 6 = 36 PE values, where 6 of these are in-sample and
30 are out-sample predictions). The error matrix is then normalized using the minimum and maximum PE, so
that all prediction errors are between 0 and 1. This magni�es the di�erence in errors, if any, between samples
and places every user PE on the same scale. The element-wise mean for all users is calculated, to get the PE
matrix for each feature. Results are shown in Figure 5. In-sample prediction errors lie along the diagonal, while
out-sample prediction errors are everywhere else.

The data seems mostly stationary, as the relative prediction error does not increase when moving away from
the diagonal. It is interesting to note that the timing features (HOD, TOH, TOD) generally experience a
higher PE for in-sample predictions (along the diagonal). The coin �ow is somewhat non-stationary, as the
darker regions appear to be in areas where the training and prediction samples are far apart (upper left and
lower right corners). This may be attributed to the increased global coin �ow that comes with increased adoption.
Despite this, the methods presented in this work assume stationarity of the data. A full treatment of the Bitcoin
dataset, in which non-stationarity is accounted for, is left for future work.

7. CONCLUSION

Bitcoin transaction behavior is largely nonrandom and somewhat nonlinear. This �nding is the basis for the
methods described in this work, which compared Bitcoin transaction features in reconstructed phase space.
Experimental results indicate that behavioral patterns observed over time can be used to deprive a user of



Figure 5: Mean normalized prediction error obtained for every pair of samples within each user. In-sample
predictions lie along the diagonals, and out-sample prediction are everywhere else. Non-stationarity is seen when
the relative error increases when moving away from the main diagonal.

anonymity. This is both good and bad news. It may allow users to be tracked, despite measures taken to remain
anonymous. It also paves the way for applications that may increase the security of digital currencies, such as
fraud detection and the identi�cation of cyber criminals.

This work proposed several discriminative features for Bitcoin transactions. Both timing and complex network
information play a critical role in capturing the dynamics of a user's behavior. The methods described in this
work may be used as an additional heuristic in constructing the Bitcoin user network from the transaction
network. At the same time, the classi�cation procedure described is naive from a pattern recognition viewpoint;
higher accuracies may be obtained with more sophisticated classi�cation algorithms, such as boosting to combine
feature similarities as opposed to summation.

Encryption and anonymity alone may no longer be su�cient for concealing one's identity. Human behavior
is complex, but in some cases, predictable. Over time, behavior is a leak of information. Obfuscation against
RTI biometrics may help conceal one's identity, and in the future we may see techniques like this being employed
as more RTI sources are exploited as behavioral biometrics. We have already seen patches released to SSH in
an attempt to mitigate text-reconstruction attacks on the timing information from typing behavior,26 though
timestamp obfuscation in a protocol such as Bitcoin may not be possible. Further work is needed to evaluate
the capacity of this very immature behavioral biometric modality. The use of time-intervals as a behavioral
biometric is truly ubiquitous, as billions of people are connected to the Internet and in some way or another,
generate events with observable timestamps; from general actions such as web browsing and email messages to
application speci�c events, such as Bitcoin transactions and repository commits. The methods presented here
are a preliminary analysis of just one public source of information, moving one step closer to quantifying human
behavior.

APPENDIX A. NONLINEAR PREDICTION ERROR

Given a time series yi and predictions ŷi, the root mean squared (rms) prediction error is:

e =
√
〈(ŷn − yn)2〉



where 〈(ŷn − yn)2〉 is the expected value of the squared prediction error. In a deterministic nonlinear dynamical
system, the system history history can be used to predict future states. The concept was originally proposed by
Lorenz.27

To predict yi+1, consider an the embedded vector yi in Rde . Let the k nearest neighbors to yi be yNNi , and
let yNNi+1 be the successors to each of the neighbors yNNi . We can predict yi+1 using each of the successors yNNi+1

by taking a weighted average of yNNi+1 . In this work, predictions are made by assigning the yNNi+1 quadratically
decreasing weights when yNNi are ordered by their distance from yi. The �rst neighbor is assigned a weight of

k2

k3

3 + k2

2 + k
6

, the second a weight of (k−1)2
k3

3 + k2

2 + k
6

, and so on. This places more emphasis on close neighbors, while

retaining some in�uence from distance neighbors. The quadratically decreasing weights were chosen to be robust
with sample size ranging from 100 to 1000. For small samples, there are relatively few neighbors yNNi that may
give good predictions, and distant xNNi generally give worse predictions. Exponentially decreasing weights may
be appropriate in this case. On the other hand, with large samples, there are more good yNNi , and it would
be desirable to assign these linearly decreasing weights. The quadratically decreasing weights are a compromise
between linearly decreasing and exponentially decreasing weights.

The out-sample PE can also be obtained by determining yNNi from another sample. To make out-sample
predictions, take ẏNNi (and consequently ẏNNi+1 ) from a di�erent sample ẏi, making predictions similarly as above.
In-sample predictions are made by taking yNNi and yNNi+1 from the same sample.

APPENDIX B. APPROXIMATE MULTIVARIATE WALD-WOLFOWITZ TEST

The multivariate Wald-Wolfowitz (WW) test18 is an extension of the nonparametric Wald-Wolfowitz runs test.19

Computing the WW test statistic relies on the construction of the minimum spanning tree (MST), requiring
O(N3) time, where N = m+ n, and m and n are the sizes of the two samples xi and yi respectively. For large
data, this is computationally expensive; thus an approximation that yields similar results is used.

The approximate multivariate Wald-Wolfowitz4 (AMWW) test works as follows: �rst select a proper embed-
ding for xi and yi as described in Section 4.2 to get embedded vectors xi and yi in dimension de. Use a k-d tree
to e�ciently �nd the k nearest neighbors to each vector, and construct the approximate MST in Rde . As long
as k is large enough and the data is well-behaved, the approximate MST will be similar to the true MST, while
time cost in reduced to O(Nk log(Nk)). The AMWW statistic is then computed similar to the WW: count the
number of runs, R, in the MST, where a run is a segment of the tree that connects vectors from the same sample.
The expected number of runs is given in Equation (3) and W can be computed from Equation (4).

E(R) =
2mn

N
+ 1 (3)

W =
R− 2mn

N − 1(
2mn(2mn−N)
N2(N−1)

) 1
2

(4)
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