
JSS Journal of Statistical Software
August 2018, Volume 86, Issue 4. doi: 10.18637/jss.v086.i04

General Semiparametric Shared Frailty Model:
Estimation and Simulation with frailtySurv

John V. Monaco
Naval Postgraduate School

Malka Gorfine
Tel Aviv University

Li Hsu
Fred Hutchinson

Cancer Research Center

Abstract

The R package frailtySurv for simulating and fitting semi-parametric shared frailty
models is introduced. Package frailtySurv implements semi-parametric consistent estima-
tors for a variety of frailty distributions, including gamma, log-normal, inverse Gaussian
and power variance function, and provides consistent estimators of the standard errors
of the parameters’ estimators. The parameters’ estimators are asymptotically normally
distributed, and therefore statistical inference based on the results of this package, such
as hypothesis testing and confidence intervals, can be performed using the normal distri-
bution. Extensive simulations demonstrate the flexibility and correct implementation of
the estimator. Two case studies performed with publicly available datasets demonstrate
applicability of the package. In the Diabetic Retinopathy Study, the onset of blindness is
clustered by patient, and in a large hard drive failure dataset, failure times are thought
to be clustered by the hard drive manufacturer and model.

Keywords: shared frailty model, survival analysis, clustered data, frailtySurv, R.

1. Introduction

The semi-parametric Cox proportional hazards (PH) regression model was developed by Sir
David Cox (1972) and is by far the most popular model for survival analysis. The model
defines a hazard function, which is the rate of an event occurring at any given time, given
the observation is still at risk, as a function of the observed covariates. When data consist of
independent and identically distributed observations, the parameters of the Cox PH model
are estimated using the partial likelihood (Cox 1975) and the Breslow (1974) estimator.
Often, the assumption of independent and identically distributed observations is violated. In
clinical data, it is typical for survival times to be clustered or depend on some unobserved co-

https://doi.org/10.18637/jss.v086.i04

2 frailtySurv: General Semiparametric Shared Frailty Model in R

variates. This can be due to geographical clustering, subjects sharing common genes, or some
other predisposition that cannot be observed directly. Survival times can also be clustered by
subject when there are multiple observations per subject with common baseline hazard. For
example, the Diabetic Retinopathy Study was conducted to determine the time to the onset
of blindness in high risk diabetic patients and to evaluate the effectiveness of laser treatment.
The treatment was administered to one randomly-selected eye in each patient, leaving the
other eye untreated. Obviously, the two eyes’ measurements of each patient are clustered by
patient due to unmeasured patient-specific effects.
Clustered survival times are not limited to clinical data. Computer components often exhibit
clustering due to different materials and manufacturing processes. The failure rate of magnetic
storage devices is of particular interest since component failure can result in data loss. A large
backup storage provider may utilize tens of thousands of hard drives consisting of hundreds
of different hard drive models. In evaluating the time until a hard drive becomes inoperable,
it is important to consider operating conditions as well as the hard drive model. Hard drive
survival times depend on the model since commercial grade models may be built out of better
materials and designed to have longer lifetimes than consumer grade models. The above
two examples are used in Section 5 for demonstrating the usage of the frailtySurv package
(Monaco, Gorfine, and Hsu 2018).
Clayton (1978) accounted for cluster-specific unobserved effects by introducing a random
effect term into the proportional hazards model, which later became known as the shared
frailty model. A shared frailty model includes a latent random variable, the frailty, which
comprises the unobservable dependency between members of a cluster. The frailty has a
multiplicative effect on the hazard, and given the observed covariates and unobserved frailty,
the survival times within a cluster are assumed independent.
Under the shared frailty model, the hazard function at time t of observation j of cluster i is
given by

λij (t|Zij , ωi) = ωiλ0 (t) eβ>Zij , j = 1, . . . ,mi, i = 1, . . . , n, (1)

where ωi is an unobservable frailty variate of cluster i, λ0(t) is the unknown common baseline
hazard function, β is the unknown regression coefficient vector, and Zij is the observed vector
of covariates of observation j in cluster i. The frailty variates ω1, . . . , ωn, are independent
and identically distributed with known density f (·; θ) and unknown parameter θ.
There are currently several estimation techniques available with a corresponding R package
(R Core Team 2018) for fitting a shared frailty model, as shown in Table 1. In a parametric
model, the baseline hazard function is of known parametric form, with several unknown pa-
rameters. Parameter estimation of parametric models is performed by the maximum marginal
likelihood (MML) approach (Duchateau and Janssen 2007; Wienke 2010). The parfm pack-
age (Munda, Rotolo, and Legrand 2012) implements several parametric frailty models. In a
semi-parametric model, the baseline hazard function is left unspecified, a highly important
feature, as often in practice the shape of the baseline hazard function is unknown. Un-
der the semi-parametric setting, the top downloaded packages, survival (Therneau 2018b)
and coxme (Therneau 2018a), implement the penalized partial likelihood (PPL). frailtypack
parameter estimates are obtained by nonlinear least squares (NLS) with the hazard func-
tion and cumulative hazard function modeled by a 4th order cubic M-spline and integrated
M-spline, respectively (Rondeau, Mazroui, and Gonzalez 2012). Since the frailty term is
a latent variable, expectation maximization (EM) is also a natural estimation strategy for

Journal of Statistical Software 3

package::function λ0
Estimation
procedure Frailty distributions Weekly

downloads
survival::coxph NP PPL Gamma, LN, LT 3905
gss::sscox NP PPL LN 1120
coxme::coxme NP PPL LN 260
frailtypack::frailtyPenal NP NLS Gamma, LN 98
R2BayesX::bayesx NP PPL LN 58
phmm::phmm NP EM LN 52
frailtySurv::fitfrail NP PFL Gamma, LN, IG, PVF 50
frailtyHL::frailtyHL NP HL Gamma, LN 50
parfm::parfm P MML Gamma, PS, IG 49
survBayes::survBayes NP Bayes Gamma, LN 28

Table 1: R functions for fitting shared frailty models. NP = nonparametric, P = para-
metric, PPL = penalized partial likelihood, NLS = nonlinear least squares, EM = expec-
tation maximization, PFL = pseudo full likelihood, HL = h-likelihood, MML = maximum
marginal likelihood, LN = log-normal, LT = log-t, IG = inverse Gaussian, PS = positive
stable. Weekly downloads are averages from the time the package first appears on the RStu-
dio CRAN mirror through 2016-06-01, as reported by the RStudio CRAN package download
logs: http://cran-logs.rstudio.com/.

semi-parametric models, implemented by phmm (Donohue and Xu 2017). More recently, a
hierarchical-likelihood (h-likelihood, or HL) method (Do Ha, Lee, and kee Song 2001) has
been used to fit hierarchical shared frailty models, implemented by frailtyHL (Do Ha, Noh,
and Lee 2018). Both R packages R2BayesX (Brezger, Kneib, and Lang 2005; Gu 2014) and gss
(Hirsch and Wienke 2012) can fit a shared frailty model and support only Gaussian random
effects with the baseline hazard function estimated by penalized splines.
This work introduces the frailtySurv R package, an implementation of Gorfine, Zucker, and
Hsu (2006) and Zucker, Gorfine, and Hsu (2008), wherein an estimation procedure for semi-
parametric shared frailty models with general frailty distributions was proposed. Gorfine
et al. (2006) addresses some limitations of other existing methods. Specifically, all other
available semi-parametric packages can only be applied with gamma, log-normal (LN), and
log-t (LT) frailty distributions. In contrast, the semi-parametric estimation procedure used in
frailtySurv supports general frailty distributions with finite moments, and the current version
of frailtySurv implements gamma, log-normal, inverse Gaussian (IG), and power variance
function (PVF) frailty distributions. Additionally, the asymptotic properties of most of the
semi-parametric estimators in Table 1 are not known. In contrast, the regression coefficients’
estimators, the frailty distribution parameter estimator, and the baseline hazard estimator of
frailtySurv are backed by a rigorous large-sample theory (Gorfine et al. 2006; Zucker et al.
2008). In particular, these estimators are consistent and asymptotically normally distributed.
A consistent covariance-matrix estimator of the regression coefficients’ estimators and the
frailty distribution parameter’s estimator is provided by Gorfine et al. (2006) and Zucker
et al. (2008), also implemented by frailtySurv. Alternatively, frailtySurv can perform variance
estimation through a weighted bootstrap procedure. Package frailtySurv is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
frailtySurv.

http://cran-logs.rstudio.com/
https://CRAN.R-project.org/package=frailtySurv
https://CRAN.R-project.org/package=frailtySurv

4 frailtySurv: General Semiparametric Shared Frailty Model in R

While some of the packages in Table 1 contain synthetic and/or real-world survival datasets,
none of them contain functions to simulate clustered data. There exist several other packages
capable of simulating survival data, such as the rmultime function in the MST package (Cal-
houn, Su, Nunn, and Fan 2018), the genSurv function in survMisc (Dardis 2016), and survsim
(Moriña and Navarro 2014), an R package dedicated to simulating survival data. These func-
tions simulate only several frailty distributions. frailtySurv contains a rich set of simulation
functions, described in Section 2, capable of generating clustered survival data under a wide
variety of conditions. The simulation functions in frailtySurv are used to empirically verify
the implementation of unbiased (bug-free) estimators through several simulated experiments.
The rest of this paper is organized as follows. Sections 2 and 3 describe the data generation
and model estimation functions of frailtySurv, respectively. Section 4 demonstrates simulation
capabilities and results. Section 5 is a case study of two publicly available datasets, including
high-risk patients from the Diabetic Retinopathy Study and a large hard drive failure dataset.
Finally, Section 6 concludes the paper. The currently supported frailty distributions are
described in Appendix A, full simulation results are presented in Appendix B, and Appendix C
contains an empirical analysis of runtime and accuracy.

2. Data generation
The genfrail function in frailtySurv can generate clustered survival times under a wide
variety of conditions. The survival function at time t of the jth observation of cluster i, given
time-independent covariate Zij and frailty variate ωi, is given by

Sij(t|Zij , ωi) = exp
{
−Λ0 (t)ωieβ

>Zij
}
, (2)

where Λ0 (t) =
∫ t

0 λ0 (u) du is the unspecified cumulative baseline hazard function. In the
following sections we describe in detail the various options for setting each component of the
above conditional survival function.

2.1. Covariates

Covariates can be sampled marginally from normal, uniform, or discrete uniform distributions,
as specified by the covar.distr parameter. The value of β is specified to genfrail through
the covar.param parameter. User-supplied covariates can also be passed as the covar.matrix
parameter. There is no limit to the covariates’ vector dimension. However, the estimation
procedure requires the number of clusters to be much higher than the number of covariates.
These options are demonstrated in Section 2.7.

2.2. Baseline hazard

There are three ways the baseline hazard can be specified to generate survival data: as the
inverse cumulative baseline hazard Λ−1

0 , the cumulative baseline hazard Λ0, or the baseline
hazard λ0. If the cumulative baseline hazard function can be directly inverted, then failure
times can be computed by

T oij = Λ−1
0

{
− ln (Uij) e−β

>Zij/ωi
}
, (3)

Journal of Statistical Software 5

where Uij ∼ U (0, 1) and T oij is the failure time of member j of cluster i. Consequently, if Λ−1
0

is provided as parameter Lambda_0_inv in genfrail, then survival times are determined by
Equation 3. This is the most efficient way to generate survival data.
When Λ0 cannot be inverted, one can use a univariate root-finding algorithm to solve

Sij
(
T oij |Zij , ωi

)
− Uij = 0 (4)

for failure time T oij . Alternatively, taking the logarithm and solving

−Λ0
(
T oij

)
ωie

β>Zij − lnUij = 0 (5)

yields greater numerical stability. Therefore, genfrail uses Equation 5 when Λ0 is provided
as parameter Lambda_0 in genfrail and uses the R function uniroot, which is based on
Brent’s algorithm (Brent 2013).
If neither Λ−1

0 or Λ0 are provided to genfrail, then the baseline hazard function λ0 must be
passed as parameter lambda_0. In this case,

Λ0 (t) =
∫ t

0
λ0 (s) ds (6)

is evaluated numerically. Using the integrate function in the stats package (R Core Team
2018), which implements adaptive quadrature, Equation 5 can be numerically solved for T oij .
This approach is the most computationally expensive since it requires numerical integration
to be performed for each observation ij and at each iteration in the root-finding algorithm.
Section 2.7 demonstrates generating data using each of the above methods, which all generate
failure times in the range [0,∞). The computational complexity of each method is O (n) under
the assumption that a constant amount of work needs to be performed for each observation.
Despite this, the constant amount of work per observation varies greatly depending on how
the baseline hazard is specified. Using the inverse cumulative baseline hazard, there exists an
analytic solution for each observation and only arithmetic operations are required. Specifying
the cumulative baseline hazard requires root finding for each observation, and specifying the
baseline hazard requires both root finding and numerical integration for each observation.
Since the time to perform root finding and numerical integration is not a function of n, the
complexity remains linear in each case. Appendix C.1 contains benchmark simulations that
compare the timings of each method.

2.3. Shared frailty

Shared frailty variates ω1, . . . , ωn are generated according to the specified frailty distribution,
through parameters frailty and theta of genfrail, respectively. The available distributions
are gamma with mean 1 and variance θ; PVF with mean 1 and variance 1 − θ; log-normal
with mean exp(θ/2) and variance exp(2θ) − exp(θ); and inverse Gaussian with mean 1 and
variance θ. genfrail can also generate frailty variates from a positive stable (PS) distribution,
although estimation is not supported due to the PS having an infinite mean. The supported
frailty distributions are described in detail in Appendix A. Specifying parameters that induce
a degenerate frailty distribution, or passing frailty = "none", will generate non-clustered
data. Hierarchical clustering is currently not supported by frailtySurv.

6 frailtySurv: General Semiparametric Shared Frailty Model in R

0.0

0.5

1.0

1.5

0 1 2 3
ω

D
en

si
ty

Gamma(0.86)

LN(1.17)

IG(2.03)

PVF(0.08)

PS(0.70)

κ = 0.30

0 1 2 3
ω

Gamma(1.64)

LN(2.71)

IG(15.28)

PS(0.55)

κ = 0.45

0 1 2 3
ω

Gamma(4.67)

LN(12.55)

PS(0.30)

κ = 0.70

Figure 1: Frailty distribution densities.

The dependence between two cluster members can be measured by Kendall’s tau1, given by

κ = 4
∫ ∞

0
sL (s)L(2) (s) ds− 1, (7)

where L is the Laplace transform of the frailty distribution and L(m), m = 1, 2, . . . are the
mth derivatives of L. If failure times of the two cluster members are independent, κ = 0.
Figure 1 shows the densities of the supported distributions for various values of κ. Note that
gamma, IG, and PS are special cases of the PVF. For gamma, LN, and IG, κ = 0 when
θ = 0, and for PVF, κ = 0 when θ = 1. Also, for gamma and LN, limθ→∞ κ = 1, for IG
limθ→∞ κ = 1/2, for PVF limθ→0 κ = 1/3, and for PS κ = 1− θ.

2.4. Cluster sizes

In practice, the cluster sizes mi, i = 1, . . . , n, can be fixed or may vary. For example, in the
Diabetic Retinopathy Study, two failure times are observed for each subject, corresponding
to the left and right eye. Hence, observations are clustered by subject, and each cluster has
exactly two members. If instead the observations were clustered by geographical location,
the cluster sizes would vary, e.g., according to a discrete power law distribution. genfrail is
able to generate data with fixed or varying cluster sizes.
For fixed cluster size, the cluster size parameter K of genfrail is simply an integer. Alter-
natively, the cluster sizes may be specified by passing a length-N vector of the desired cluster
sizes to parameter K. To generate varied cluster sizes, K is the name of the distribution to
generate from, and K.param specifies the distribution parameters.
Cluster sizes can be generated from a k-truncated Poisson with K = "poisson" (Geyer 2018).
The truncated Poisson is used to ensure there are no zero-sized clusters and to enforce a

1Kendall’s tau is denoted by κ to avoid confusion with τ , the end of the follow-up period.

Journal of Statistical Software 7

minimum cluster size. The expected cluster size is given by
λ
(
1− e−λ

∑k
j=0

λj

j!

)−1
k = 0,

λ−e−λ
∑k

j=1
λj

(j−1)!

1−e−λ
∑k

j=0
λj

j!
k > 0,

(8)

where λ is a shape parameter and k is the truncation point such that min{m1, . . . ,mn} > k.
The typical case is with k = 0 for a zero-truncated Poisson. For example, with λ = 2 and
k = 0, the expected cluster size equals 2.313. The parameters of the k-truncated Poisson are
determined in K.param = c(lambda, k) of genfrail.
A discrete Pareto (or zeta) distribution can also be used to generate cluster sizes with K
= "pareto". Accurately fitting and generating from a discrete power-law distribution is
generally difficult, and genfrail uses a truncated discrete Pareto to avoid some of the pitfalls
as described in Clauset, Shalizi, and Newman (2009). The probability mass function is given
by

P(M = m) = (m− l)−s /ζ (s)∑u−l
j=1 j

−s/ζ (s)
, s > 1, u > l, m = l + 1, . . . , u, (9)

where ζ (s) is the Riemann zeta function, s is a scaling parameter, l is the noninclusive
lower bound, and u is the inclusive upper bound. With large enough u and s � 1, the
distribution behaves similar to the discrete Pareto distribution and the expected cluster size
equals 1

ζ(s)
∑∞
j=1

1
js−1 . The distribution parameters are specified as K.param = c(s, u, l).

Finally, a discrete uniform distribution can be specified by K = "uniform" in genfrail. The
respective parameters to K.param are c(l, u), where l is the noninclusive lower bound and
u is the inclusive upper bound. Similar to the truncated zeta, the support is {l + 1, . . . , u}
while each cluster size is uniformly selected from this set of values. Since the lower bound is
noninclusive, the expected cluster size equals (1 + l + u)/2.

2.5. Censoring

The observed times Tij and failure indicators δij are determined by the failure times T oij and
right-censoring times Cij such that the observed time of observation ij is given by

Tij = min
(
T oij , Cij

)
, j = 1, . . . ,mi i = 1, . . . , n, (10)

and the failure indicator is given by

δij = I
(
T oij ≤ Cij

)
, j = 1, . . . ,mi i = 1, . . . , n . (11)

Currently, only right-censoring is supported by frailtySurv. The censoring distribution is
specified by the parameters censor.distr and censor.param for the distribution name and
parameters’ vector, respectively. A normal distribution is used by default. A log-normal
censoring distribution is specified by censor.distr = "lognormal" and censor.param =
c(mu, sigma), where mu is the mean and sigma is the standard deviation of the censoring
distribution. Lastly, a uniform censoring distribution can be specified by censor.distr =
"uniform" and censor.param = c(lower, upper) for the lower and upper bounds on the
interval, respectively.

8 frailtySurv: General Semiparametric Shared Frailty Model in R

Sometimes a particular censoring rate is desired. Typically, the censoring distribution pa-
rameters are varied to obtain a desired censoring rate. genfrail can avoid this effort on
behalf of the user by letting the desired censoring rate be specified instead. In this case, the
appropriate parameters for the censoring distribution are determined to achieve the desired
censoring rate, given the generated failure times.
Let F and G be the failure time and censoring time cumulative distributions, respectively.
Then, the censoring rate equals

E {I(T o11 > C11)} =
∫ ∞

0
G(t)dF (t) , (12)

where the expectation of I(T o11 > C11) equals the expectation of any random subject from
the population. The above formula can be estimated by

Ê {I(T o11 > C11)} =
∫ ∞

0
G(t)dF̂ (t), (13)

where F̂ is the empirical cumulative distribution function. To obtain a particular censoring
rate 0 < R < 1, as a function of the parameters of G, one can solve

R− Ê {I(T o11 > C11)} = 0 . (14)

For example, if G is the normal cumulative distribution function with mean µ and variance
σ2, σ2 should be pre-specified (otherwise the problem is non-identifiable), and Equation 14 is
solved for µ. This method works with any empirical distribution of failure times. genfrail
uses this approach to achieve a desired censoring rate, specified by censor.rate, with normal,
log-normal, or uniform censoring distributions. Lastly, user-supplied censorship times can be
supplied through the censor.time parameter, which must be a vector of length N * K, where
N is the number of clusters and K is the size of each cluster. Because of this, censor.time
cannot be used with variable-sized clusters.

2.6. Rounding

In some applications the observed times are rounded and tied failure times can occur. For
example, the age at onset of certain diseases are often recorded as years of age rounded to
the nearest integer. To simulate tied data, the simulated observed times may optionally be
rounded to the nearest integer of multiple of B by

Ṫij = B

⌊
Tij
B

+ 0.5
⌋
. (15)

If B = 1, the observed times are simply rounded to the nearest integer. The value of B is
specified by the parameter round.base of genfrail, with the default being the non-rounded
setting.

2.7. Examples

The best way to see how genfrail works is through examples. R and frailtySurv versions
are given by the following commands.

Journal of Statistical Software 9

R> R.Version()$version.string

[1] "R version 3.4.3 (2017-11-30)"

R> packageDescription("frailtySurv", fields = "Version")

[1] "1.3.5"

Consider the survival model defined in Equation 2 with baseline hazard function

λ0 (t) =
{
d (ct)d

}
t−1, (16)

where c = 0.01 and d = 4.6. Let Gamma (2) be the frailty distribution, two independent
standard normally distributed covariates, and N

(
130, 152) the censoring distribution. The

resulting survival times are representative of a late onset disease and with ∼ 40% censoring
rate. Generating survival data from this model, with 300 clusters and 2 members within each
cluster, is accomplished by2

R> set.seed(2015)
R> dat <- genfrail(N = 300, K = 2, beta = c(log(2), log(3)),
+ frailty = "gamma", theta = 2,
+ lambda_0 = function(t, c = 0.01, d = 4.6) (d * (c * t) ^ d) / t)
R> head(dat, 3)

family rep time status Z1 Z2
1 1 1 87.95447 1 -1.5454484 0.9944159
2 1 2 110.04615 0 -0.5283932 -0.9053164
3 2 1 119.94127 1 -1.0867588 0.5240979

Similarly, to generate survival data with uniform covariates from, e.g., 0.1 to 0.2, specify
covar.distr = "uniform" and covar.param = c(0.1, 0.2) in the above example. The
covariates may also be specified explicitly in a c(N * K, length(beta)) matrix as the
covar.matrix parameter.
In the above example, the baseline hazard function was specified by the lambda_0 parameter.
The same dataset can be generated more efficiently using the Lambda_0 parameter if the cu-
mulative baseline hazard function is known. This is accomplished by integrating Equation 16
to get the cumulative baseline hazard function

Λ0 (t) = (ct)d (17)

and passing this function as an argument to Lambda_0 when calling genfrail:

R> set.seed(2015)
R> dat.cbh <- genfrail(N = 300, K = 2, beta = c(log(2),log(3)),
+ frailty = "gamma", theta = 2,
+ Lambda_0 = function(t, c = 0.01, d = 4.6) (c * t) ^ d)
R> head(dat.cbh, 3)

2Note that N and K are the parameters of genfrail that correspond to math notation n (number of clusters)
and mi (cluster size), respectively.

10 frailtySurv: General Semiparametric Shared Frailty Model in R

family rep time status Z1 Z2
1 1 1 87.95447 1 -1.5454484 0.9944159
2 1 2 110.04615 0 -0.5283932 -0.9053164
3 2 1 119.94127 1 -1.0867588 0.5240979

The cumulative baseline hazard in Equation 17 is invertible and it would be even more efficient
to specify Λ−1

0 as
Λ−1

0 (t) = c−1t1/d . (18)

This avoids the numerical integration, required by Equation 6, and root finding, required by
Equation 5. Equation 18 should be passed to genfrail as the Lambda_0_inv parameter,
again producing the same data when the same seed is used:

R> set.seed(2015)
R> dat.inv <- genfrail(N = 300, K = 2, beta = c(log(2),log(3)),
+ frailty = "gamma", theta = 2,
+ Lambda_0_inv = function(t, c = 0.01, d = 4.6) (t ^ (1 / d)) / c)
R> head(dat.inv, 3)

family rep time status Z1 Z2
1 1 1 87.95449 1 -1.5454484 0.9944159
2 1 2 110.04615 0 -0.5283932 -0.9053164
3 2 1 119.94127 1 -1.0867588 0.5240979

A different frailty distribution can be specified while ensuring an expected censoring rate
by using the censor.rate parameter. For example, consider a PVF (0.3) frailty distribution
while maintaining the 40% censoring rate in the previous example. The censoring distribution
parameters are determined by genfrail as described in Section 2.5 by specifying censor.rate
= 0.4. This avoids the need to manually adjust the censoring distribution to achieve a
particular censoring rate. The respective code and output are:

R> set.seed(2015)
R> dat.pvf <- genfrail(N = 300, K = 2, beta = c(log(2),log(3)),
+ frailty = "pvf", theta = 0.3, censor.rate = 0.4,
+ Lambda_0_inv = function(t, c = 0.01, d = 4.6) (t ^ (1 / d)) / c)
R> summary(dat.pvf)

genfrail created : 2018-06-14 13:46:36
Observations : 600
Clusters : 300
Avg. cluster size : 2.00
Right censoring rate : 0.39
Covariates : normal(0, 1)
Coefficients : 0.6931, 1.0986
Frailty : pvf(0.3)
Baseline hazard : Lambda_0

= function (t, tau = 4.6, C = 0.01) (t^(1/tau))/C

Journal of Statistical Software 11

3. Model estimation
The fitfrail function in frailtySurv estimates the regression coefficient vector β, the frailty
distribution’s parameter θ, and the non-parametric cumulative baseline hazard Λ0. The
observed data consist of {Tij ,Zij , δij} for i = 1, . . . , n and j = 1, . . . ,mi, where the n clusters
are independent. fitfrail takes a complete observation approach, and observations with
missing values are ignored with a warning.
There are two estimation strategies that can be used. The log-likelihood can be maximized
directly, by using control parameter fitmethod = "loglik", or a system of score equations
can be solved with control parameter fitmethod = "score". Both methods have comparable
computational requirements and yield comparable results. In both methods, the estimation
procedure consists of a doubly-nested loop, with an outer loop that evaluates the objec-
tive function and gradients and an inner loop that estimates the piecewise constant hazard,
performing numerical integration at each time step if necessary. As a result, the estimator
implemented in frailtySurv has computationally complexity on the order of O

(
n2).

3.1. Log-likelihood
The full likelihood can be written as

L(β, θ,Λ0) =
n∏
i=1

∫ mi∏
j=1
{λij(Tij |Zij , ω)}δij Sij(Tij |Zij , ω)f(ω)dω

=
n∏
i=1

mi∏
j=1

{
λ0 (Tij) eβ

>Zij
}δij n∏

i=1
(−1)Ni.(τ)L(Ni.(τ)) {Hi. (τ)} , (19)

where τ is the end of follow-up period, f is the frailty’s density function, Nij (t) = δijI (Tij ≤ t),
Ni. (t) =

∑mi
j=1Nij (t), Hij (t) = Λ0 (Tij ∧ t) eβ

>Zij , and Hi. (t) =
∑mi
j=1Hij (t), j = 1, . . . ,mi,

i = 1, . . . , n. Note that the mth derivative of the Laplace transform evaluated at Hi. (τ)
equals (−1)Ni.(τ) ∫ ωNi.(τ) exp {−ωHi. (τ)} f (ω) dω, i = 1, . . . , n. The log-likelihood equals

`(β, θ,Λ0) =
n∑
i=1

mi∑
j=1

δij log
{
λ0 (Tij) eβ

>Zij
}

+
n∑
i=1

logL{Ni.(τ)} {Hi. (τ)} . (20)

Evidently, to obtain estimators β̂ and θ̂ based on the log-likelihood, an estimator of Λ0,
denoted by Λ̂0, is required. For given values of β and θ, Λ0 is estimated by a step function
with jumps at the ordered observed failure times τk, k = 1, . . . ,K, defined by

∆Λ̂0 (τk) = dk∑n
i=1 ψi

(
γ, Λ̂0, τk−1

)∑mi
j=1 Yij (τk) eβ

>Zij
, k = 1, . . . ,K, (21)

where dk is the number of failures at time τk, ψi (γ,Λ, t) = φ2i (γ,Λ, t) /φ1i (γ,Λ, t), Yij (t) =
I (Tij ≥ t), and

φai (γ,Λ0, t) = L(Ni.(t)+a−1){Hi.(t)} a = 1, 2 .
For the detailed derivation of the above baseline hazard estimation the reader is referred to
Gorfine et al. (2006). The estimator of the cumulative baseline hazard at time τk is given by

Λ̂0 (τk) =
k∑
l=1

∆Λ̂0 (τl) , (22)

12 frailtySurv: General Semiparametric Shared Frailty Model in R

and is a function of
∑mi
i=1 Λ̂0 (Tij ∧ τk−1) eβ>Zij , i.e., at each τk, the cumulative baseline hazard

estimator is a function of Λ̂0(t) with t < τk. Then, for obtaining β̂ and θ̂, Λ̂0 is substituted
into `(β, θ,Λ0).
In summary, the estimation procedure of Gorfine et al. (2006) consists of the following steps:

Step 1. Use standard Cox regression software to obtain initial estimates of β, and set the
initial value of θ to be its value under within-cluster independence or under very week
dependency (see also the discussion at the end of Section 3.2).

Step 2. Use the current values of β and θ to estimate Λ0 based on the estimation procedure
defined by Equation 21.

Step 3. Using the current value of Λ̂0, estimate β and θ by maximizing l(β, θ, Λ̂0).

Step 4. Iterate between Steps 2 and 3 until convergence.

For frailty distributions with no closed-form Laplace transform, the integral can be evaluated
numerically. This adds a considerable overhead to each iteration in the estimation procedure
since the integrations must be performed for the baseline hazard estimator that is required
for estimating β and θ, as Hi. (τ) =

∑mi
i=1 Λ0 (Tij ∧ τ) eβ>Zij .

With control parameter fitmethod = "loglik", the log-likelihood is the objective function
maximized directly with respect to γ = (β>, θ)>, for any given Λ0, by optim in the stats
package using the L-BFGS-B algorithm (Byrd, Lu, Nocedal, and Zhu 1995). Box constraints
specify bounds on the frailty distribution parameters, typically θ ∈ (0,∞) except for PVF
which has θ ∈ (0, 1). Convergence is determined by the relative reduction in the objective
function through the reltol control parameter. By default, this is 10−6.
As an example, consider fitting a model to the data generated in Section 2. The following
result shows that convergence is reached after 11 iterations and 15.8 seconds, running Red
Hat 6.5, R version 3.2.2, and 2.6 GHz Intel Sandy Bridge processor:

R> fit <- fitfrail(Surv(time, status) ~ Z1 + Z2 + cluster(family),
+ dat, frailty = "gamma", fitmethod = "loglik")
R> fit

Call: fitfrail(formula = Surv(time, status) ~ Z1 + Z2 + cluster(family),
dat = dat, frailty = "gamma", fitmethod = "loglik")

Covariate Coefficient
Z1 0.719
Z2 1.194

Frailty distribution gamma(1.716), VAR of frailty variates = 1.716
Log-likelihood -2507.725
Converged (method) 11 iterations, 6.75 secs (maximized log-likelihood)

Journal of Statistical Software 13

3.2. Score equations

Instead of maximizing the log-likelihood, one can solve the score equations. The score function
with respect to β is given by

Uβ = ∂

∂β
`(β, θ,Λ0) =

n∑
i=1

mi∑
j=1

δijZij +
∂
∂βHi. (τ) ∂

∂Hi.(τ)L
{Ni.(τ)} (Hi. (τ))

L{Ni.(τ)} (Hi. (τ))


=

n∑
i=1

mi∑
j=1

δijZij +
mi∑
j=1

Hij (Tij) Zij
L{Ni.(τ)+1} (Hi. (τ))
L{Ni.(τ)} (Hi. (τ))

 . (23)

Note that L(Ni.(τ)+1) {Hi. (τ)} /L(Ni.(τ)) {Hi. (τ)} corresponds to ψi in Gorfine et al. (2006).
The score function with respect to θ is given by

Uθ = ∂

∂θ
`(β, θ,Λ0) =

n∑
i=1

∂
∂θL

(Ni.(τ)) (Hi. (τ))
L(Ni.(τ)) (Hi. (τ))

. (24)

The score equations are given by U(β, θ,Λ0) = (Uβ,Uθ) = 0 and the estimator of γ = (β>, θ)
is defined as the value of (β>, θ) that solves the score equations for any given Λ0. Specifically,
the only change required in the above summary of the estimation procedure, is to replace
Step 3 with the following

Step 3’. Using the current value of Λ̂0, estimate β and θ by solving U(β, θ, Λ̂0) = 0.

frailtySurv uses Newton’s method implemented by the nleqslv package to solve the system
of equations (Hasselman 2017). Convergence is reached when the relative reduction of each
parameter estimate or absolute value of each normalized score is below the threshold specified
by reltol or abstol, respectively. The default is a relative reduction of γ̂ less than 10−6,
i.e., reltol = 1e-6.
As an example, in the following lines of code and output we consider again the data gener-
ated in Section 2. The results are comparable to the fitted model in Section 3.1. The score
equations can usually be solved in fewer iterations than maximizing the likelihood, although
solving the system of equations requires more work in each iteration. For this reason, max-
imizing the likelihood is typically more computationally efficient for large datasets when a
permissive convergence criterion is specified.

R> fit.score <- fitfrail(Surv(time, status) ~ Z1 + Z2 + cluster(family),
+ dat, frailty = "gamma", fitmethod = "score")
R> fit.score

Call: fitfrail(formula = Surv(time, status) ~ Z1 + Z2 + cluster(family),
dat = dat, frailty = "gamma", fitmethod = "score")

Covariate Coefficient
Z1 0.719
Z2 1.194

14 frailtySurv: General Semiparametric Shared Frailty Model in R

Frailty distribution gamma(1.716), VAR of frailty variates = 1.716
Log-likelihood -2507.725
Converged (method) 10 iterations, 6.50 secs (solved score equations)

L-BFGS-B, used for maximizing the log-likelihood, allows for (possibly open-ended) box con-
straints. In contrast, Newton’s method, used for solving the system of score equations, does
not support the use of box constraints and, therefore, has a risk of converging to a degenerate
parameter value. In this case, it is more important to have a sensible starting value. In both
estimation methods, the regression coefficient vector β is initialized to the estimates given by
coxph with no shared frailty. The frailty distribution parameters are initialized such that the
dependence between members in each cluster is small, i.e, with κ ≈ 0.3.

3.3. Baseline hazard

The estimated cumulative baseline hazard defined by Equation 22 is accessible from the
resulting model object through the fit$Lambda member, which provides a data.frame with
the estimates at each observed failure time, or the fit$Lambda.fun member, which defines a
scalar R function that takes a time argument and returns the estimated cumulative baseline
hazard. The estimated survival curve or cumulative baseline hazard can also be summarized
by the summary method for objects returned by fitfrail resulting in a data.frame. In the
example below, the n.risk column contains the number of observations still at risk at time
t− and the n.event column contains the number of failures from the previous time listed to
time t+. The output is similar to that of the summary method for ‘survfit’ objects in the
survival package.

R> head(summary(fit), 3)

time n.risk n.event surv
1 23.37616 600 1 0.9992506
2 24.38503 599 1 0.9984604
3 25.14435 598 1 0.9976600

R> tail(summary(fit), 3)

time n.risk n.event surv
384 139.5629 42 1 0.0016570493
385 140.5862 39 1 0.0011509892
386 141.3295 36 1 0.0007665802

By default, the survival curve estimates at observed failure times are returned. Estimates
at the censored observed times are included if censored = TRUE is passed to the summary
method for ‘fitfrail’ objects. The cumulative baseline hazard estimates are summarized by
parameter type = "cumhaz". The estimates can also be evaluated at specific times passed to
the summary method for ‘fitfrail’ objects through the Lambda.times parameter, demon-
strated by:

Journal of Statistical Software 15

R> summary(fit, type = "cumhaz", Lambda.times = c(20, 50, 80, 110))

time n.risk n.event cumhaz
1 20 600 0 0.00000000
2 50 566 34 0.03248626
3 80 439 127 0.33826069
4 110 274 147 1.69720757

3.4. Standard errors
There are two ways the standard errors can be obtained for a fitted model. The covariance
matrix of γ̂, the estimators of the regression coefficients and the frailty parameter, can be
obtained explicitly based on the sandwich-type consistent estimator described in Gorfine et al.
(2006) and Zucker et al. (2008). The covariance matrix is calculated by the vcov function
applied to the ‘fitfrail’ object returned by fitfrail. Optionally, standard errors can also
be obtained in the call to fitfrail by passing se = TRUE. Using the above fitted model, the
covariance matrix of γ̂ is obtained by

R> COV.est <- vcov(fit)
R> sqrt(diag(COV.est))

Z1 Z2 theta.1
0.09343685 0.12673624 0.36020143

frailtySurv can also estimate standard errors through a weighted bootstrap approach, in which
the variance of both γ̂ and Λ̂0 are determined3. The weighted bootstrap procedure consists
of independent and identically distributed positive random weights applied to each cluster.
This is in contrast to a nonparametric bootstrap, wherein each bootstrap sample consists of
a random sample of clusters with replacement. The resampling procedure of the nonpara-
metric bootstrap usually yields an increased number of ties compared to the original data,
which sometimes causes convergence problems. Therefore, we adopt the weighted bootstrap
approach which does not change the number of tied observations in the original data. The
weighted bootstrap is summarized as follows.

1. Sample n random values {v∗i , i = 1, . . . , n} from an exponential distribution with mean 1.
Standardize the values by the empirical mean to obtain standardized weights v1, . . . , vn.

2. In the estimation procedure, each function of the form
∑n
i=1 h (Ti, δi,Zi) is replaced be

the corresponding weighted function
∑n
i=1 vih (Ti, δi,Zi), where Ti = (Ti1, . . . , Timi),

δi = (δi1, . . . , δimi), and Zi = (Zi1, . . . , Zimi), i = 1, . . . , n.

3. Repeat Steps 1–2 B times and take the empirical variance (and covariance) of the B
parameter estimates to obtain the weighted bootstrap variance (and covariance).

For smaller datasets, this process is generally more time-consuming than the explicit estima-
tor. If the parallel package is available, all available cores are used to obtain the bootstrap
parameter estimates in parallel (R Core Team 2018). Without the parallel package, vcov
runs in serial.

3The sandwich estimator currently only provides the covariance matrix of γ̂ and not Λ̂0.

16 frailtySurv: General Semiparametric Shared Frailty Model in R

R> set.seed(2015)
R> COV.boot <- vcov(fit, boot = TRUE, B = 500)
R> sqrt(diag(COV.boot))[1:8]

Z1 Z2 theta.1 Lambda. 0.00000
0.0742560635 0.0984509739 0.2568936409 0.0000000000

Lambda. 23.37616 Lambda. 24.38503 Lambda. 25.14435 Lambda. 25.33731
0.0006340182 0.0010267995 0.0012781985 0.0014768459

In the preceding example, the full covariance matrix for
(
γ̂, Λ̂0

)
is obtained. If only certain

time points of the estimated cumulative baseline hazard function are desired, these can be
specified by the Lambda.times parameter. Since calls to the vcov method for ‘fitfrail’ ob-
jects are typically computationally expensive, the results are cached when the same arguments
are provided.

3.5. Control parameters

Control parameters provided to fitfrail determine the speed, accuracy, and type of es-
timates returned. The default control parameters to fitfrail are given by calling the
function fitfrail.control(). This returns a named list with the following members.

fitmethod: Parameter estimation procedure. Either "score" to solve the system of score
equations or "loglik" to estimate using the log-likelihood. Default is "loglik".

abstol: Absolute tolerance for convergence. Default is 0 (ignored).

reltol: Relative tolerance for convergence. Default is 1e-6.

maxit: The maximum number of iterations before terminating the estimation procedure.
Default is 100.

int.abstol: Absolute tolerance for numerical integration convergence. Default is 0 (ig-
nored).

int.reltol: Relative tolerance for numerical integration convergence. Default is 1.

int.maxit: The maximum number of function evaluations in numerical integration. Default
is 1000.

verbose: If verbose = TRUE, the parameter estimates and log-likelihood are printed at each
iteration. Default is FALSE.

The parameters int.abstol, int.reltol, and int.maxit are only used for frailty distri-
butions that require numerical integration, as they specify convergence criteria of numerical
integration in the estimation procedure inner loop. These control parameters can be adjusted
to obtain an speed-accuracy tradeoff, whereby lower int.abstol and int.reltol (and higher
int.maxit) yield more accurate numerical integration at the expense of more work performed
in the inner loop of the estimation procedure.
The abstol, reltol, and maxit parameters specify convergence criteria of the outer loop of
the estimation procedure. Similar to the numerical integration convergence parameters, these

Journal of Statistical Software 17

can also be adjusted to obtain a speed-accuracy tradeoff using either estimation procedure
(fitmethod = "loglik" or fitmethod = "score"). If fitmethod = "loglik", convergence
is reached when the absolute or relative reduction in log-likelihood is less than abstol or
reltol, respectively. Using fitmethod = "score" and specifying abstol > 0 (with reltol
= 0), convergence is reached when the absolute value of each score equation is below abstol.
Alternatively, using fitmethod = "score" and specifying reltol > 0 (with abstol = 0),
convergence is reached when the relative reduction of parameter estimates γ̂ is below reltol.
Note that with fitmethod = "score", abstol and reltol correspond to parameters ftol
and xtol of nleqslv::nleqslv, respectively. The default convergence criteria were chosen to
yield approximately the same results with either estimation strategy.

3.6. Model object
The resulting model object returned by fitfrail contains the regression coefficients’ vector,
the frailty distribution’s parameters, and the cumulative baseline hazard. Specifically:

beta: Estimated regression coefficients’ vector named by the input data columns.

theta: Estimated frailty distribution parameter.

loglik: The resulting log-likelihood.

Lambda: data.frame with the cumulative baseline hazard at the observed failure times.

Lambda.all: data.frame with the cumulative baseline hazard at all observed times.

Lambda.fun: Scalar R function that returns the cumulative baseline hazard at any time point.

The model object also contains some standard attributes, such as call for the function call.
If se = TRUE was passed to fitfrail, then the model object will also contain members
se.beta and se.theta for the standard error of the regression coefficients’ vector and frailty
parameter estimates, respectively.

4. Simulation
As an empirical proof of implementation, and to demonstrate flexibility, several simulations
were conducted. The simfrail function can be used to run a variety of simulation settings.
Simulations are run in parallel if the parallel package is available, and the mc.cores parameter
specifies how many processor cores to use. For example,

R> set.seed(2015)
R> sim <- simfrail(1000,
+ genfrail.args = alist(beta = c(log(2),log(3)), frailty = "gamma",
+ censor.rate = 0.30, N = 300, K = 2, theta = 2,
+ covar.distr = "uniform", covar.param = c(0, 1),
+ Lambda_0 = function(t, c = 0.01, d = 4.6) (c * t) ^ d),
+ fitfrail.args = alist(
+ formula = Surv(time, status) ~ Z1 + Z2 + cluster(family),
+ frailty = "gamma"), Lambda.times = 1:120)
R> summary(sim)

18 frailtySurv: General Semiparametric Shared Frailty Model in R

Simulation: 1000 reps, 300 clusters (avg. size 2), gamma frailty
Serial runtime (s): 9680.18 (9.68 +/- 1.53 per rep)

beta.1 beta.2 theta.1 Lambda.30 Lambda.60 Lambda.90
value 0.6931 1.0986 2.0000 0.003933 0.09539 0.6159
mean.hat 0.6821 1.0929 1.9752 0.003995 0.09716 0.6236
sd.hat 0.2472 0.2529 0.2659 0.001876 0.02248 0.1387
mean.se 0.3130 0.3156 0.3442 NA NA NA
cov.95CI 0.9890 0.9850 0.9780 NA NA NA

The above results indicate that the empirical coverage rates are reasonably close to the nom-
inal 95% coverage rate. These results can also be compared to the estimates obtained by
coxph which applies the PPL approach with gamma frailty model:

R> set.seed(2015)
R> sim.coxph <- simcoxph(1000,
+ genfrail.args = alist(beta = c(log(2), log(3)), frailty = "gamma",
+ censor.rate = 0.30, N = 300, K = 2, theta = 2,
+ covar.distr = "uniform", covar.param = c(0, 1),
+ Lambda_0 = function(t, c = 0.01, d = 4.6) (c * t) ^ d),
+ coxph.args = alist(
+ formula = Surv(time, status) ~ Z1 + Z2 + frailty.gamma(family)),
+ Lambda.times = 1:120)
R> summary(sim.coxph)

Simulation: 1000 reps, 300 clusters (avg. size 2), gamma frailty
Serial runtime (s): 113.27 (0.11 +/- 0.02 per rep)

beta.1 beta.2 theta.1 Lambda.30 Lambda.60 Lambda.90
value 0.6931 1.0986 2.0000 0.003933 0.09539 0.6159
mean.hat 0.6783 1.0913 1.9843 0.004003 0.09754 0.6282
sd.hat 0.2447 0.2522 0.2665 0.001869 0.02221 0.1375
mean.se 0.2456 0.2468 NA NA NA NA
cov.95CI 0.9470 0.9440 NA NA NA NA

The above output indicates that the frailtySurv and PPL approach with gamma frailty dis-
tribution provide similar results. Note that the theta.1 mean SE and coverage rate are NA
since coxph does not provide the SE for the estimated frailty distribution parameter.
The correlation between regression coefficient and frailty distribution parameter estimates of
both methods is given by

R> sapply(names(sim)[grepl("^hat.beta|^hat.theta", names(sim))],
+ function(name) cor(sim[[name]], sim.coxph[[name]]))

hat.beta.1 hat.beta.2 hat.theta.1
0.9912442 0.9911590 0.9982390

The mean correlation between cumulative baseline hazard estimates is given by

Journal of Statistical Software 19

R> mean(sapply(names(sim)[grepl("^hat.Lambda", names(sim))],
+ function(name) cor(sim[[name]], sim.coxph[[name]])), na.rm = TRUE)

[1] 0.9867021

Full simulation results are provided in Appendix B and include the following settings: gamma
frailty with various number of clusters; large cluster size; discrete observed times; oscillating
baseline hazard; PVF frailty with fixed and random cluster size; log-normal frailty; and inverse
Gaussian frailty. It is evident that for all the available frailty distributions our estimation
procedure and implementation work very well in terms of bias, and the sandwich-type variance
estimator is dramatically improved as the cluster size increases (for example, from 2 to 6).
The bootstrap variance estimators are shown to be accurate even with small cluster size.

5. Case study
To demonstrate the applicability of frailtySurv, results are obtained for two different datasets.
The first is a clinical dataset, for which several benchmark results exist. The second is a hard
drive failure dataset from a large cloud backup storage provider. Both datasets are pro-
vided with frailtySurv as data("drs", package = "frailtySurv") and data("hdfail",
package = "frailtySurv"), respectively.

5.1. Diabetic Retinopathy Study

The Diabetic Retinopathy Study (DRS) was performed to determine whether the onset of
blindness in 197 high-risk diabetic patients could be delayed by laser treatment (The Diabetic
Retinopathy Study Research Group 1976). The treatment was administered to one randomly-
selected eye in each patient, leaving the other eye untreated. Thus, there are 394 observations
which are clustered by patient due to unobserved patient-specific effects. A failure occurred
when visual acuity dropped to below 5/200, and approximately 61% of observations are right-
censored. All patients had a visual acuity of at least 20/100 at the beginning of the study. A
model with gamma shared frailty is estimated from the data.

R> data("drs", package = "frailtySurv")
R> fit.drs <- fitfrail(Surv(time, status) ~ treated + cluster(subject_id),
+ drs, frailty = "gamma")
R> COV.drs <- vcov(fit.drs)
R> fit.drs

Call: fitfrail(formula = Surv(time, status) ~ treated + cluster(subject_id),
dat = drs, frailty = "gamma")

Covariate Coefficient
treated -0.918

Frailty distribution gamma(0.876), VAR of frailty variates = 0.876
Log-likelihood -1005.805
Converged (method) 7 iterations, 1.36 secs (maximized log-likelihood)

20 frailtySurv: General Semiparametric Shared Frailty Model in R

−1.0

−0.5

0.0

0.5

1.0

1 2 3 4 5 6 7

Iteration

E
st

im
at

e Parameter

beta.treated

theta.1

Parameter estimate trace

−1006.3

−1006.2

−1006.1

−1006.0

−1005.9

−1005.8

1 2 3 4 5 6 7

Iteration

Lo
g−

lik
lih

oo
d

Log−likelihood trace

Figure 2: Parameter and log-likelihood trace.

R> sqrt(diag(COV.drs))

treated theta.1
0.1975261 0.3782775

The regression coefficient for the binary treated variable is estimated to be −0.918 with
0.198 estimated standard error, which indicates a 60% decrease in hazard with treatment.
The p value for testing the null hypothesis that the treatment has no effect against a two
sided alternative equals 3.5×10−6 (calculated by 2 * pnorm(-0.918/0.198)). The parameter
trace can be plotted to determine the path taken by the optimization procedure, as follows
(see Figure 2):

R> plot(fit.drs, type = "trace")

The long stretch of nearly-constant parameter estimates and log-likelihood indicates a local
maximum in the objective function. In general, a global optimum solution is not guaranteed
with numerical techniques. The estimated baseline hazard with point-wise 95% bootstrapped
confidence intervals is given by (see Figure 3):

R> set.seed(2015)
R> plot(fit.drs, type = "cumhaz", CI = 0.95)

where the seed is used to generate the weights in the bootstrap procedure of the cumulative
baseline hazard plot function. Individual failures are shown by the rug plot directly above the
time axis. Note that any other CI interval can be specified by the CI parameter of the plot
method for ‘fitfrail’ objects. Subsequent calls to the vcov method for ‘fitfrail’ objects
with the same arguments will use a cached value and avoid repeating the computationally-
expensive bootstrap or sandwich variance estimation procedures.
For comparison, the following results were obtained with coxph in the survival package based
on the PPL approach:

R> library("survival")
R> coxph(Surv(time, status) ~ treated + frailty.gamma(subject_id), drs)

Journal of Statistical Software 21

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60

Time

C
um

ul
at

iv
e

ba
se

lin
e

ha
za

rd

Figure 3: Estimated baseline hazard with point-wise 95% bootstrapped confidence intervals.

Call:
coxph(formula = Surv(time, status) ~ treated + frailty.gamma(subject_id),

data = drs)

coef se(coef) se2 Chisq DF p
treated -0.910 0.174 0.171 27.295 1.0 1.7e-07
frailty.gamma(subject_id) 114.448 84.6 0.017

Iterations: 6 outer, 30 Newton-Raphson
Variance of random effect= 0.854 I-likelihood = -850.9

Degrees of freedom for terms= 1.0 84.6
Likelihood ratio test=201 on 85.6 df, p=2.57e-11 n= 394

5.2. Hard drive failure

A dataset of hard drive monitoring statistics and failure was analyzed. Daily snapshots of
a large backup storage provider over two years were made publicly available4. On each day,
the Self-Monitoring, Analysis, and Reporting Technology (SMART) statistics of operational
drives were recorded. When a hard drive was no longer operational, it was marked as a failure
and removed from the subsequent daily snapshots. New hard drives were also continuously
added to the population. In total, there are over 52,000 unique hard drives over approximately
two years of follow-up and 2885 (5.5%) failures.
The data must be pre-processed in order to extract the SMART statistics and failure time of
each unique hard drive. In some cases, a hard drive fails to report any SMART statistics up to
several days before failing and the most recent SMART statistics before failing are recorded.
The script for pre-processing is publicly available5. Although there are 40 SMART statistics
altogether, many (older) drives only report a partial list. The current study is restricted to
the covariates described in Table 2, which are present for all but one hard drive in the dataset.

4https://www.backblaze.com/hard-drive-test-data.html
5https://github.com/vmonaco/frailtySurv-jss

https://www.backblaze.com/hard-drive-test-data.html
https://github.com/vmonaco/frailtySurv-jss

22 frailtySurv: General Semiparametric Shared Frailty Model in R

Name Description
temp Continuous covariate, which gives the internal temperature in ◦C.
rer Binary covariate, where 1 indicates a non-zero rate of errors that occur in

hardware when reading from data from disk.
rsc Binary covariate, where 1 indicates sectors that encountered read, write,

or verification errors.
psc Binary covariate, where 1 indicates there were sectors waiting to be

remapped due to an unrecoverable error.

Table 2: Hard drive failure covariates.

The hard drive lifetimes are thought to be clustered by model and manufacturer. There are
85 unique models ranging in capacity from 80 gigabytes to 6 terabytes. The cluster sizes
loosely follow a power-law distribution, with anywhere from 1 to over 15,000 hard drives of a
particular model.
For a fair comparison, the hard drives of a single manufacturer were selected. The subset of
Western Digital hard drives consists of 40 different models with 178 failures out of 3530 hard
drives. The hard drives are clustered by model, and cluster sizes range from 1 to 1190 with
a mean of 88.25. A gamma shared frailty model was fitted to the data using the "score" fit
method and default convergence criteria.

R> data("hdfail", package = "frailtySurv")
R> hdfail.sub <- subset(hdfail, grepl("WDC", model))
R> fit.hd <- fitfrail(
+ Surv(time, status) ~ temp + rer + rsc + psc + cluster(model),
+ hdfail.sub, frailty = "gamma", fitmethod = "score")
R> fit.hd

Call: fitfrail(formula = Surv(time, status) ~ temp + rer + rsc + psc +
cluster(model), dat = hdfail.sub, frailty = "gamma", fitmethod = "score")

Covariate Coefficient
temp -0.0145
rer 0.7861
rsc 0.9038
psc 2.4414

Frailty distribution gamma(1.501), VAR of frailty variates = 1.501
Log-likelihood -1305.134
Converged (method) 10 iterations, 15.78 secs (solved score equations)

Bootstrapped standard errors for the regression coefficients and frailty distribution parameter
are given by

R> set.seed(2015)
R> COV <- vcov(fit.hd, boot = TRUE)
R> se <- sqrt(diag(COV)[c("temp", "rer", "rsc", "psc", "theta.1")])
R> se

Journal of Statistical Software 23

0

1

2

3

0 219 438 657 876 1095 1314 1533 1752 1971 2190

Time

C
um

ul
at

iv
e

ba
se

lin
e

ha
za

rd

Figure 4: Estimated baseline hazard with 95% confidence interval.

temp rer rsc psc theta.1
0.03095664 0.62533725 0.18956662 0.36142850 0.32433275

Significance of the regression coefficient estimates are given by their corresponding p values,

R> pvalues <- pnorm(abs(c(fit.hd$beta, fit.hd$theta)) / se,
+ lower.tail = FALSE) * 2
R> pvalues

temp rer rsc psc theta.1
6.400162e-01 2.087038e-01 1.861996e-06 1.429667e-11 3.690627e-06

Only the estimated regression coefficients of the reallocated sector count (rsc) and pending
sector count (psc) are statistically significant at the 0.05 level. Generally, SMART statistics
are thought to be relatively weak predictors of hard drive failure (Pinheiro, Weber, and
Barroso 2007). A hard drive is about twice as likely to fail with at least one previous bad
sector (given by rsc > 0), while the hazard increases by a factor of 11 with the presence
of bad sectors waiting to be remapped. The estimated baseline hazard with 95% CI is also
plotted, up to 6 years, in Figure 4. This time span includes all but one hard drive that failed
after 15 years (model: WDC WD800BB).

R> plot(fit.hd, type = "cumhaz", CI = 0.95, end = 365 * 6)

6. Discussion
frailtySurv provides a suite of functions for generating clustered survival data, fitting shared
frailty models under a wide range of frailty distributions, and visualizing the output. The
semi-parametric model has better asymptotic properties than most existing implementations,
including consistent and asymptotically-normal estimators, which penalized partial likelihood
estimation lacks. Moreover, this is the first R package that implements semi-parametric
estimators with inverse Gaussian and PVF frailty models. The complete set of supported

24 frailtySurv: General Semiparametric Shared Frailty Model in R

frailty distributions, including implementation details, are described in Appendix A. The
flexibility and robustness of data generation and model fitting functions are demonstrated in
Appendix B through a series of simulations.
The main limitation of frailtySurv is the computational complexity, which is approximately
an order of magnitude greater than PPL. Despite this, critical sections of code have been op-
timized to provide reasonable performance for small and medium sized datasets. Specifically,
frailtySurv caches computationally-expensive results, parallelizes independent computations,
and makes extensive use of natively-compiled C++ functions through the Rcpp R package
(Eddelbuettel and François 2011). As a remedy for relatively larger computational complex-
ity, control parameters allow for fine-grained control over numerical integration and outer
loop convergence, leading to a speed-accuracy tradeoff in parameter estimation.
The runtime performance and speed-accuracy tradeoff of core frailtySurv functions are exam-
ined empirically in Appendix C. These simulations confirm the O (n) complexity of genfrail
and O

(
n2) complexity of fitfrail using either log-likelihood maximization or normalized

score equations. Frailty distributions without analytic Laplace transforms have the additional
overhead of numerical integration inside the double-nested loop, although the growth in run-
time is comparable to those without numerical integration. Covariance matrix estimation also
has complexity O

(
n2), dominated by memory management and matrix operations. In order

to obtain a tradeoff between speed and accuracy, the convergence criteria of the outer loop
estimation procedure and convergence of numerical integration (for LN and IG frailty) can be
specified through parameters to fitfrail. Accuracy of the regression coefficient estimates
and frailty distribution parameter, as measured by the residuals, decreases as the absolute
and relative reduction criteria in the outer loop are relaxed (Figure 18 in Appendix B). The
simulations also indicate a clear reduction in runtime as numerical integration criteria are
relaxed without a significant loss in accuracy (Figure 19 in Appendix B).
Choosing a proper frailty distribution is a challenging problem, although extensive simulation
studies suggest that misspecification of the frailty distribution does not affect the bias and
efficiency of the regression coefficient estimators substantially, despite the observation that a
different frailty distribution could lead to appreciably different association structures (Glid-
den and Vittinghoff 2004; Gorfine, De-Picciotto, and Hsu 2012). There are several existing
works on tests and graphical procedures for checking the dependence structures of clusters
of size two (Glidden 1999; Shih and Louis 1995; Cui and Sun 2004; Glidden 2007). However,
implementation of these procedures requires substantial extension to the current package,
which will be considered in a separate work.

Acknowledgments
The authors would like to thank Google, which partially funded development of frailtySurv
through the 2015 Google Summer of Code, and NIH grants (R01CA195789 and P01CA53996).

References

Berntsen J, Espelid TO, Genz A (1991). “An Adaptive Algorithm for the Approximate
Calculation of Multiple Integrals.” ACM Transactions on Mathematical Software, 17(4),
437–451. doi:10.1145/210232.210233.

https://doi.org/10.1145/210232.210233

Journal of Statistical Software 25

Brent RP (2013). Algorithms for Minimization without Derivatives. Courier Corporation.

Breslow N (1974). “Covariance Analysis of Censored Survival Data.” Biometrics, 30(1),
89–99. doi:10.2307/2529620.

Brezger A, Kneib T, Lang S (2005). “BayesX: Analyzing Bayesian Structured Additive Regres-
sion Models.” Journal of Statistical Software, 14(11), 1–22. doi:10.18637/jss.v014.i11.

Byrd RH, Lu P, Nocedal J, Zhu C (1995). “A Limited Memory Algorithm for Bound Con-
strained Optimization.” SIAM Journal on Scientific Computing, 16(5), 1190–1208. doi:
10.1137/0916069.

Calhoun P, Su X, Nunn M, Fan J (2018). “Constructing Multivariate Survival Trees: The
MST Package for R.” Journal of Statistical Software, 83(12), 1–21. doi:10.18637/jss.
v083.i12.

Clauset A, Shalizi CR, Newman MEJ (2009). “Power-Law Distributions in Empirical Data.”
SIAM Review, 51(4), 661–703. doi:10.1137/070710111.

Clayton DG (1978). “A Model for Association in Bivariate Life Tables and Its Application in
Epidemiological Studies of Familial Tendency in Chronic Disease Incidence.” Biometrika,
65(1), 141–151. doi:10.1093/biomet/65.1.141.

Cox DR (1972). “Regression Models and Life-Tables.” Journal of the Royal Statistical Society
B, 34(2), 187–220.

Cox DR (1975). “Partial Likelihood.” Biometrika, 62(2), 269–276. doi:10.1093/biomet/
62.2.269.

Cui S, Sun Y (2004). “Checking for the Gamma Frailty Distribution under the Marginal
Proportional Hazards Frailty Model.” Statistica Sinica, 14(1), 249–267.

Dardis C (2016). survMisc: Miscellaneous Functions for Survival Data. R package version
0.5.4, URL https://CRAN.R-project.org/package=survMisc.

Do Ha I, Lee Y, kee Song J (2001). “Hierarchical Likelihood Approach for Frailty Models.”
Biometrika, 88(1), 233–233. doi:10.1093/biomet/88.1.233.

Do Ha I, Noh M, Lee Y (2018). frailtyHL: Frailty Models via H-Likelihood. R package version
2.1, URL https://CRAN.R-project.org/package=frailtyHL.

Donohue MC, Xu R (2017). phmm: Proportional Hazards Mixed-Effects Models. R package
version 0.7-10, URL https://CRAN.R-project.org/package=phmm.

Duchateau L, Janssen P (2007). The Frailty Model. Springer-Verlag.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Genz AC, Malik A (1980). “Remarks on Algorithm 006: An Adaptive Algorithm for Numerical
Integration over an N-Dimensional Rectangular Region.” Journal of Computational and
Applied Mathematics, 6(4), 295–302. doi:10.1016/0771-050x(80)90039-x.

https://doi.org/10.2307/2529620
https://doi.org/10.18637/jss.v014.i11
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.18637/jss.v083.i12
https://doi.org/10.18637/jss.v083.i12
https://doi.org/10.1137/070710111
https://doi.org/10.1093/biomet/65.1.141
https://doi.org/10.1093/biomet/62.2.269
https://doi.org/10.1093/biomet/62.2.269
https://CRAN.R-project.org/package=survMisc
https://doi.org/10.1093/biomet/88.1.233
https://CRAN.R-project.org/package=frailtyHL
https://CRAN.R-project.org/package=phmm
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1016/0771-050x(80)90039-x

26 frailtySurv: General Semiparametric Shared Frailty Model in R

Geyer CJ (2018). aster: Aster Models. R package version 0.9.1.1, URL https://CRAN.
R-project.org/package=aster.

Glidden DV (1999). “Checking the Adequacy of the Gamma Frailty Model for Multivariate
Failure Times.” Biometrika, 86(2), 381–393. doi:10.1093/biomet/86.2.381.

Glidden DV (2007). “Pairwise Dependence Diagnostics for Clustered Failure-Time Data.”
Biometrika, 94(2), 371–385. doi:10.1093/biomet/asm024.

Glidden DV, Vittinghoff E (2004). “Modelling Clustered Survival Data from Multicentre
Clinical Trials.” Statistics in Medicine, 23(3), 369–388. doi:10.1002/sim.1599.

Goedman R, Grothendieck G, Højsgaard S, Pinkus A, Mazur G (2016). Ryacas: R Interface
to the yacas Computer Algebra System. R package version 0.3-1, URL https://CRAN.
R-project.org/package=Ryacas.

Gorfine M, De-Picciotto R, Hsu L (2012). “Conditional and Marginal Estimates in Case-
Control Family Data – Extensions and Sensitivity Analyses.” Journal of Statistical Com-
putation and Simulation, 82(10), 1449–1470. doi:10.1080/00949655.2011.581669.

Gorfine M, Zucker DM, Hsu L (2006). “Prospective Survival Analysis with a General Semi-
parametric Shared Frailty Model: A Pseudo Full Likelihood Approach.” Biometrika, 93(3),
735–741. doi:10.1093/biomet/93.3.735.

Gu C (2014). “Smoothing Spline ANOVA Models: R Package gss.” Journal of Statistical
Software, 58(5), 1–25. doi:10.18637/jss.v058.i05.

Hanagal DD (2009). “Modeling Heterogeneity for Bivariate Survival Data by Power Variance
Function Distribution.” Journal of Reliability and Statistical Studies, 2(1), 14–27.

Hasselman B (2017). nleqslv: Solve Systems of Nonlinear Equations. R package version 3.3.1,
URL https://CRAN.R-project.org/package=nleqslv.

Hirsch K, Wienke A (2012). “Software for Semiparametric Shared Gamma and Log-Normal
Frailty Models: An Overview.” Computer Methods and Programs in Biomedicine, 107(3),
582–597. doi:10.1016/j.cmpb.2011.05.004.

Johnson SG (2013). cubature. C library version 1.0.2, URL http://ab-initio.mit.edu/
wiki/index.php/Cubature.

Monaco JV, Gorfine M, Hsu L (2018). frailtySurv: General Semiparametric Shared
Frailty Model. R package version 1.3.5, URL https://CRAN.R-project.org/package=
frailtySurv.

Moriña D, Navarro A (2014). “The R Package survsim for the Simulation of Simple and
Complex Survival Data.” Journal of Statistical Software, 59(2), 1–20. doi:10.18637/jss.
v059.i02.

Munda M, Rotolo F, Legrand C (2012). “parfm: Parametric Frailty Models in R.” Journal
of Statistical Software, 51(11), 1–20. doi:10.18637/jss.v051.i11.

Pinheiro E, Weber WD, Barroso LA (2007). “Failure Trends in a Large Disk Drive Popula-
tion.” In FAST, volume 7, pp. 17–23.

https://CRAN.R-project.org/package=aster
https://CRAN.R-project.org/package=aster
https://doi.org/10.1093/biomet/86.2.381
https://doi.org/10.1093/biomet/asm024
https://doi.org/10.1002/sim.1599
https://CRAN.R-project.org/package=Ryacas
https://CRAN.R-project.org/package=Ryacas
https://doi.org/10.1080/00949655.2011.581669
https://doi.org/10.1093/biomet/93.3.735
https://doi.org/10.18637/jss.v058.i05
https://CRAN.R-project.org/package=nleqslv
https://doi.org/10.1016/j.cmpb.2011.05.004
http://ab-initio.mit.edu/wiki/index.php/Cubature
http://ab-initio.mit.edu/wiki/index.php/Cubature
https://CRAN.R-project.org/package=frailtySurv
https://CRAN.R-project.org/package=frailtySurv
https://doi.org/10.18637/jss.v059.i02
https://doi.org/10.18637/jss.v059.i02
https://doi.org/10.18637/jss.v051.i11

Journal of Statistical Software 27

R Core Team (2018). R : A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ridout MS (2009). “Generating Random Numbers from a Distribution Specified by its Laplace
Transform.” Statistics and Computing, 19(4), 439–450. doi:10.1007/s11222-008-9103-x.

Rondeau V, Mazroui Y, Gonzalez JR (2012). “frailtypack: An R Package for the Analysis
of Correlated Survival Data with Frailty Models Using Penalized Likelihood Estimation
or Parametrical Estimation.” Journal of Statistical Software, 47(4), 1–28. doi:10.18637/
jss.v047.i04.

Shih JH, Louis TA (1995). “Inferences on the Association Parameter in Copula Models for
Bivariate Survival Data.” Biometrics, 51(4), 1384–1399. doi:10.2307/2533269.

Smyth G, Hu Y, Dunn P, Phipson B, Chen Y (2017). statmod: Statistical Modeling. R
package version 1.4.30, URL https://CRAN.R-project.org/package=statmod.

The Diabetic Retinopathy Study Research Group (1976). “Preliminary Report on Effects of
Photocoagulation Therapy.” American Journal of Ophthalmology, 81(4), 383–396. doi:
10.1016/0002-9394(76)90292-0.

Therneau TM (2018a). coxme: Mixed Effects Cox Models. R package version 2.2-7, URL
https://CRAN.R-project.org/package=coxme.

Therneau TM (2018b). survival: A Package for Survival Analysis in S. R package version
2.42-3, URL https://CRAN.R-project.org/package=survival.

Wienke A (2010). Frailty Models in Survival Analysis. CRC Press. doi:10.1201/
9781420073911.

Zucker DM, Gorfine M, Hsu L (2008). “Pseudo-Full Likelihood Estimation for Prospec-
tive Survival Analysis with a General Semiparametric Shared Frailty Model: Asymp-
totic Theory.” Journal of Statistical Planning and Inference, 138(7), 1998–2016. doi:
10.1016/j.jspi.2007.08.005.

https://www.R-project.org/
https://doi.org/10.1007/s11222-008-9103-x
https://doi.org/10.18637/jss.v047.i04
https://doi.org/10.18637/jss.v047.i04
https://doi.org/10.2307/2533269
https://CRAN.R-project.org/package=statmod
https://doi.org/10.1016/0002-9394(76)90292-0
https://doi.org/10.1016/0002-9394(76)90292-0
https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=survival
https://doi.org/10.1201/9781420073911
https://doi.org/10.1201/9781420073911
https://doi.org/10.1016/j.jspi.2007.08.005
https://doi.org/10.1016/j.jspi.2007.08.005

28 frailtySurv: General Semiparametric Shared Frailty Model in R

A. Frailty distributions
All the frailty distributions used in frailtySurv have support ω ∈ (0,∞). Identifiability prob-
lems are avoided by constraining the parameters when necessary. The gamma and PVF have
a closed-form analytic expression for the Laplace transform, while the log-normal and inverse
Gaussian Laplace transforms must be evaluated numerically. Analytic derivatives of the
gamma and PVF Laplace transform were determined using the Ryacas R package (Goedman,
Grothendieck, Højsgaard, Pinkus, and Mazur 2016). The resulting symbolic expressions were
verified by comparison to numerical results. All the frailty distribution functions have both R
and C++ implementations, while the C++ functions are used in parameter estimation. The
Rcpp R package provides an interface to compiled native code (Eddelbuettel and François
2011). Numerical integration is performed by h-adaptive cubature (multi-dimensional integra-
tion over hypercubes), provided by the cubature C library (Johnson 2013), which implements
algorithms described in Genz and Malik (1980) and Berntsen, Espelid, and Genz (1991).
For the gamma, log-normal, and inverse Gaussian, there is a positive relationship between
the distribution parameter θ and the strength of dependence between cluster members. As θ
increases, intra-cluster failure-times dependency increases. The opposite is true for the PVF,
and as θ increases, the dependence between failure-times of the cluster’s members decreases.
For frailty distributions with closed-form Laplace transforms, frailty variates are generated
using a modified Newton-Raphson algorithm for numerical transform inversion (Ridout 2009).
Note that while frailtySurv can generate survival data from a positive stable (PS) frailty
distribution with Laplace transform L (s) = exp (−αsα/α) where 0 < α < 1, it cannot
estimate parameters for this model since the PS has infinite mean. Frailty values from a
log-normal distribution are generated in the usual way, and inverse Gaussian variates are
generated using a transformation method in the statmod package (Smyth, Hu, Dunn, Phipson,
and Chen 2017).

A.1. Gamma

Gamma distribution, denoted by Gamma(θ−1) ≡ Gamma(θ−1, θ−1), is of mean 1 and variance
θ. The frailtySurv package uses a one-parameter gamma distribution with shape and scale
both θ−1, so the density function becomes

f(ω; θ) =
ω

1
θ
−1 exp

(−ω
θ

)
θ

1
θΓ(1

θ)
. (25)

The special case with θ = 0 is the degenerate distribution in which ω ≡ 1, i.e., there is no
unobserved frailty effect. Integrals in the log-likelihood function of Equation 20 can be solved
using the Laplace transform derivatives, given by

L(m) (s) = (−1)m θ−
1
θ

(
θ−1 + s

)−(1
θ

+m)
Γ
(
θ−1 +m

)
/Γ
(
θ−1

)
, m = 0, 1, 2, . . . , (26)

where L(0) = L. The first and second derivatives of the Laplace transform with respect to
θ are also required for estimation. Due to their length, these expressions are omitted. See
the deriv_lt_dgamma_r and deriv_deriv_lt_dgamma_r internal functions for the explicit
expressions.

Journal of Statistical Software 29

A.2. Power variance function

The power variance function distribution is denoted by PVF(θ, δ, θ) and with density

f (ω; θ, δ, µ) = exp
(
−µω + δθ

θ

)
1
π

∞∑
k=1

Γ (kθ + 1)
k!

(
− 1
ω

)θk+1
sin (θkπ) , (27)

where 0 < θ ≤ 1, µ ≥ 0, δ > 0. To avoid identifiability problems, we let δ = µ = 1 as in
Hanagal (2009), and get a one-parameter PVF density

f (ω; θ) = exp
(
−ω + θ−1

) 1
π

∞∑
k=1

Γ (kθ + 1)
k!

(
− 1
ω

)θk+1
sin (θkπ) . (28)

When θ = 1, the degenerate distribution with ω ≡ 1 is obtained. PVF has expectation 1 and
variance 1− θ. The Laplace transform is given by

L (s) = exp
[
−
{

(1 + s)θ − 1
}
/θ
]
. (29)

The Laplace transform derivatives are given by

L(m) (s) = (−1)m L (s)
m∑
j=1

cm,j (θ) (1 + s)jθ−m , m = 1, 2, . . . (30)

with coefficients

cm,m (θ) = 0

cm,1 (θ) = Γ (m− θ)
Γ (1− θ)

cm,j (θ) = cm−1,j−1 (θ) + cm−1,j (θ) {(m− 1)− jθ} .

The partial derivatives of the Laplace transform with respect to θ are given by

∂

∂θ
L(m) (s) = ∂

∂θ

(−1)m L (s)
m∑
j=1

cm,j (θ) (1 + s)jθ−m


= (−1)m
{
∂

∂θ
L (s)

} m∑
j=1

cm,j (θ) (1 + s)jθ−m

+ (−1)m L (s)
m∑
j=1

{
∂

∂θ
cm,j (θ) (1 + s)jθ−m

+cm,j (θ) j (1 + s)jθ−m ln (1 + s)
}
, (31)

where
∂

∂θ
L (s) = exp

{
1− (s+ 1)θ

θ

}{
−1− (s+ 1)θ

θ2 − (s+ 1)θ log (s+ 1)
θ

}

30 frailtySurv: General Semiparametric Shared Frailty Model in R

and the partial derivatives of the coefficients are

∂

∂θ
cm,m (θ) = 0

∂

∂θ
cm,1 (θ) =

Γ (m− θ)
{
ψ(0) (1− θ)− ψ(0) (m− θ)

}
Γ (1− θ)

∂

∂θ
cm,j (θ) = ∂

∂θ
cm−1,j−1 (θ) + ∂

∂θ
cm−1,j (θ) {(m− 1)− jθ} − jcm−1,j (θ) .

A.3. Log-normal

The log-normal distribution is denoted by LN(θ) and with density function

f(ω; θ) = 1
ω
√
θ2π

exp
{
− (lnω)2

2θ

}
, (32)

so the mean and variance are exp(θ/2) and exp(2θ) − exp(θ), respectively. The Laplace
transform and its derivatives equal

L(m) (s) =
∫ ∞

0
(−ω)m e−sωf (ω; θ) dω, m = 0, 1, 2, (33)

Similar to the gamma distribution, the special case of θ = 0 implies that ω ≡ 1. The density’s
partial derivative with respect to θ is given by

∂

∂θ
f(ω; θ) =

ln2 (ω) exp
(
− ln2 ω

2θ

)
2
√

2πθ5/2ω
−

exp
(
− ln2 ω

2θ

)
2
√

2πθ3/2ω
. (34)

A.4. Inverse Gaussian

The inverse Gaussian distribution is denoted by IG(θ), with mean 1 and variance θ. The
density is given by

f (ω; θ) =
(
2πθω3

)−1/2
exp

{
− (ω − 1)2

2θω

}
, (35)

where θ > 0. The Laplace transform and its derivatives equal

L(m) (s) =
∫ ∞

0
(−ω)m e−sωf (ω; θ) dω, m = 1, 2, (36)

Similar to the gamma and log-normal, ω ≡ 1 when θ = 0. The partial derivative of the
density function with respect to θ is given by

∂

∂θ
f (ω; θ) =

(ω − 1)2 exp
{
− (ω−1)2

2θω

}
2
√

2πθ2ω
√
θω3

−
ω3 exp

{
− (ω−1)2

2θω

}
2
√

2π (θω3) 3/2 .

Journal of Statistical Software 31

B. Simulation results
All simulations were run with 1000 repetitions, n = 300, fixed cluster size with m = 2
members within each cluster, covariates sampled from U (0, 1), regression coefficient vector
β = (log 2, log 3)>, 30% censorship rate, and Λ0 as in Equation 17 with c = 0.01 and d = 4.6,
unless otherwise specified. The same seed is used for each configuration. Function calls are
omitted for brevity and can be seen in the code repository6.

B.1. Benchmark simulation

As a benchmark simulation, we consider gamma frailty, with Gamma (2). The results are
summarized as follows:

Simulation: 1000 reps, 300 clusters (avg. size 2), gamma frailty
Serial runtime (s): 9812.27 (9.81 +/- 1.69 per rep)

beta.1 beta.2 theta.1 Lambda.30 Lambda.60 Lambda.90
value 0.6931 1.0986 2.0000 0.003933 0.09539 0.6159
mean.hat 0.6821 1.0929 1.9752 0.003995 0.09716 0.6236
sd.hat 0.2472 0.2529 0.2659 0.001876 0.02248 0.1387
mean.se 0.3130 0.3156 0.3442 NA NA NA
cov.95CI 0.9890 0.9850 0.9780 NA NA NA

The cumulative baseline hazard true and estimated functions, with 95% point-wise confidence
interval, is shown in Figure 5. Figure 6 indicates that by increasing the number of clusters,
n, the bias and the variance of the estimators converge to zero, as expected.

B.2. Large clusters

Increasing cluster size improves the estimated variances, especially of the frailty distribution
parameter’s estimator. The following simulation results are of Gamma (2), n = 100 and fixed
cluster size with m = 6, see also Figure 7.

Simulation: 1000 reps, 100 clusters (avg. size 6), gamma frailty
Serial runtime (s): 3665.11 (3.67 +/- 0.78 per rep)

beta.1 beta.2 theta.1 Lambda.30 Lambda.60 Lambda.90
value 0.6931 1.0986 2.0000 0.003933 0.09539 0.6159
mean.hat 0.7077 1.0910 1.9979 0.003860 0.09554 0.6184
sd.hat 0.1958 0.2038 0.3100 0.001757 0.02191 0.1355
mean.se 0.2135 0.2182 0.3247 NA NA NA
cov.95CI 0.9620 0.9660 0.9530 NA NA NA

B.3. Discrete observation times

Data generation allows for failure times to be rounded with respect to a specified base. The
observed follow-up times were rounded to the nearest multiple of 10. The following simulation
results indicate that even under the setting of ties, the empirical bias is reasonably small, and

6https://github.com/vmonaco/frailtySurv-jss

https://github.com/vmonaco/frailtySurv-jss

32 frailtySurv: General Semiparametric Shared Frailty Model in R

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100 125

Time

C
um

ul
at

iv
e

ba
se

lin
e

ha
za

rd
Legend

Actual

Empirical (0.95 CI)

Figure 5: Cumulative baseline hazard true and estimated functions, with 95% point-wise
confidence interval.

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●● ●●● ●●●●
●●
●

●● ●●●● ● ●

●

●

●

●

●●●

●
●●

●●

beta.1 beta.2 theta.1 Lambda.30 Lambda.60 Lambda.90

25 50

250

500 25 50

250

500 25 50

250

500 25 50

250

500 25 50

250

500 25 50

250

500

−2

0

2

N

B
ia

s

Figure 6: Distribution of the difference between estimated and true parameters in dependence
of sample size.

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100 125

Time

C
um

ul
at

iv
e

ba
se

lin
e

ha
za

rd

Legend

Actual

Empirical (0.95 CI)

Figure 7: Cumulative baseline hazard true and estimated functions, with 95% point-wise
confidence interval.

Journal of Statistical Software 33

0

1

2

3

0 25 50 75 100 125

Time

C
um

ul
at

iv
e

ba
se

lin
e

ha
za

rd
Legend

Actual

Empirical (0.95 CI)

Figure 8: Cumulative baseline hazard true and estimated functions, with 95% point-wise
confidence interval.

the empirical coverage rates of the confidence intervals are reasonably close to the nominal
level. See the results below and Figure 8.

Simulation: 1000 reps, 300 clusters (avg. size 2), gamma frailty
Serial runtime (s): 10160.15 (10.16 +/- 1.73 per rep)

beta.1 beta.2 theta.1 Lambda.30 Lambda.60 Lambda.90
value 0.6931 1.0986 2.0000 0.003933 0.09539 0.6159
mean.hat 0.6646 1.0736 1.9733 0.008242 0.14299 0.8182
sd.hat 0.2457 0.2487 0.2630 0.003010 0.03230 0.1837
mean.se 0.3127 0.3147 0.3454 NA NA NA
cov.95CI 0.9900 0.9850 0.9800 NA NA NA

B.4. Oscillating baseline hazard
Consider the baseline hazard function

λ0 (t) = asin(bπt)
{
d (ct)d

}
t−1 t > 0 (37)

where a = 2, b = 0.1, c = 0.01, and d = 4.6. Such an oscillatory component may be atypical
in survival data, but demonstrates the flexibility of frailtySurv data generation and parameter
estimation capabilities, as evident in the following simulation results (see also Figure 9).

Simulation: 1000 reps, 300 clusters (avg. size 2), gamma frailty
Serial runtime (s): 9560.76 (9.57 +/- 1.62 per rep)

beta.1 beta.2 theta.1 Lambda.30 Lambda.60 Lambda.90
value 0.6931 1.0986 2.0000 0.005658 0.09050 0.7641
mean.hat 0.6810 1.0928 1.9747 0.005746 0.09226 0.7726
sd.hat 0.2462 0.2541 0.2656 0.002339 0.02150 0.1732
mean.se 0.3132 0.3157 0.3445 NA NA NA
cov.95CI 0.9880 0.9840 0.9830 NA NA NA

B.5. Power variance function frailty
Power variance function frailty, with PVF (0.3) is considered, and the simulation results are

34 frailtySurv: General Semiparametric Shared Frailty Model in R

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125

Time

C
um

ul
at

iv
e

ba
se

lin
e

ha
za

rd
Legend

Actual

Empirical (0.95 CI)

Figure 9: Cumulative baseline hazard true and estimated functions, with 95% point-wise
confidence interval.

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100 125

Time

C
um

ul
at

iv
e

ba
se

lin
e

ha
za

rd

Legend

Actual

Empirical (0.95 CI)

Figure 10: Cumulative baseline hazard true and estimated functions, with 95% point-wise
confidence interval.

summarized below and in Figure 10.

Simulation: 1000 reps, 300 clusters (avg. size 2), pvf frailty
Serial runtime (s): 9004.42 (9.00 +/- 2.01 per rep)

beta.1 beta.2 theta.1 Lambda.30 Lambda.60 Lambda.90
value 0.6931 1.0986 0.3000 0.003933 0.09539 0.6159
mean.hat 0.6888 1.0899 0.3245 0.003990 0.09627 0.6223
sd.hat 0.2144 0.2127 0.1127 0.001756 0.01922 0.1124
mean.se 0.2643 0.2687 0.1266 NA NA NA
cov.95CI 0.9750 0.9880 0.9670 NA NA NA

B.6. Poisson cluster sizes

Up until now, the cluster sizes have been held constant. Varying cluster sizes are typical
in, e.g., geographical clustering and family studies. Consider the case in which the family
size is randomly sampled from a zero-truncated Poisson with 2.313 mean family size. The
following simulation results use PVF (0.3). The results are very good in terms of bias and the
confidence intervals’ coverage rates; see also Figure 11.

Simulation: 1000 reps, 300 clusters (avg. size 2.315), pvf frailty

Journal of Statistical Software 35

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100 125

Time

C
um

ul
at

iv
e

ba
se

lin
e

ha
za

rd
Legend

Actual

Empirical (0.95 CI)

Figure 11: Cumulative baseline hazard true and estimated functions, with 95% point-wise
confidence interval.

Serial runtime (s): 13383.31 (13.38 +/- 2.56 per rep)
beta.1 beta.2 theta.1 Lambda.30 Lambda.60 Lambda.90

value 0.6931 1.0986 0.30000 0.003933 0.09539 0.6159
mean.hat 0.6830 1.0777 0.31944 0.004006 0.09767 0.6219
sd.hat 0.1837 0.2020 0.09878 0.001620 0.01838 0.1030
mean.se 0.2361 0.2411 0.10604 NA NA NA
cov.95CI 0.9870 0.9790 0.95700 NA NA NA

B.7. Log-normal frailty

In this simulation, LN (2) was used. The frailty variance equals 47.2. See results below and
Figure 12.

Simulation: 1000 reps, 300 clusters (avg. size 2), lognormal frailty
Serial runtime (s): 68060.81 (68.06 +/- 15.07 per rep)

beta.1 beta.2 theta.1 Lambda.30 Lambda.60 Lambda.90
value 0.6931 1.0986 2.0000 0.003933 0.09539 0.6159
mean.hat 0.6902 1.0794 1.9597 0.004173 0.09885 0.6282
sd.hat 0.2374 0.2416 0.3805 0.001634 0.02387 0.1280
mean.se 0.3402 0.3557 0.5066 NA NA NA
cov.95CI 0.9950 0.9900 0.9650 NA NA NA

B.8. Inverse Gaussian frailty

Finally, we used IG (2), where the frailty variance equals 2.

Simulation: 1000 reps, 300 clusters (avg. size 2), invgauss frailty
Serial runtime (s): 83183.12 (83.18 +/- 17.43 per rep)

beta.1 beta.2 theta.1 Lambda.30 Lambda.60 Lambda.90
value 0.6931 1.0986 2.0000 0.003933 0.09539 0.6159
mean.hat 0.6898 1.0862 1.9489 0.004077 0.09648 0.6203
sd.hat 0.2280 0.2305 0.6226 0.001855 0.02108 0.1328

36 frailtySurv: General Semiparametric Shared Frailty Model in R

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 125

Time

C
um

ul
at

iv
e

ba
se

lin
e

ha
za

rd
Legend

Actual

Empirical (0.95 CI)

Figure 12: Cumulative baseline hazard true and estimated functions, with 95% point-wise
confidence interval.

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100 125

Time

C
um

ul
at

iv
e

ba
se

lin
e

ha
za

rd

Legend

Actual

Empirical (0.95 CI)

Figure 13: Cumulative baseline hazard true and estimated functions, with 95% point-wise
confidence interval.

mean.se 0.2692 0.2685 0.8916 NA NA NA
cov.95CI 0.9840 0.9770 0.9520 NA NA NA

See also Figure 13.

C. Performance analysis
Runtime was measured by the R function system.time, which measures the CPU time to
evaluate an expression. All runs used 100 clusters of size 2, covariates sampled from U (0, 1),
regression coefficient vector β = (log 2, log 3)>, N (130, 15) censorship distribution, Λ0 as in
Equation 17 with c = 0.01 and d = 4.6, and 100 repetitions of each configuration, unless
otherwise specified. The benchmark simulations were performed using a cluster of Red Hat
6.5 compute nodes, each with 2×2.6 GHz Intel Sandy Bridge (8 core) processors and 64 GB
memory.

C.1. Core functions

The runtimes of frailtySurv functions genfrail and fitfrail, and the vcov method for
‘fitfrail’ objects were determined for increasing values of n, ranging from 50 to 200 in

Journal of Statistical Software 37

Baseline hazard

Cumulative baseline hazard

Inverse cumulative baseline hazard

0

1

2

3

4

0

1

2

3

0

1

2

3

50 100 150 200

N

R
un

tim
e

(s
)

R
un

tim
e

(s
)

R
un

tim
e

(s
)

Gamma LN IG PVF

Figure 14: genfrail timings using each method of baseline hazard specification for increasing
values of n. It is most efficient to specify the inverse cumulative baseline hazard to avoid
solving for the root in Equation 5 and evaluating the integral in Equation 6.

increments of 10. For each function, the runtime was determined for each of the four frailty
distributions and each estimation procedure, where applicable. The bootstrap covariance
runtime, i.e., vcov for ‘fitfrail’ objects with boot = TRUE, was not analyzed since this con-
sists primarily of repetitions of the parameter estimation function, fitfrail. The resulting
runtimes are shown in Figures 14, 15, and 16, respectively.
Figure 14 shows the runtime of genfrail, which is linear in n, i.e., on the order of O (n),
although slope varies greatly depending on how the baseline hazard is specified. This is due
to the amount of work that must be performed per observation. Specifying the cumulative
baseline hazard or inverse cumulative baseline hazard to genfrail results in nearly-constant
runtime. The linear increase in runtime is more apparent when the baseline hazard is specified
since both root finding and numerical integration must be performed for each observation.
The cumulative baseline hazard requires only root-finding to be performed, and the inverse
cumulative baseline hazard has an analytic solution.
The runtimes of fitfrail using each estimation procedure and frailty distribution are shown
in Figure 15. Both estimation procedures (log-likelihood reduction and normalized score
equations) are on the order of O

(
n2) due to the doubly-nested loop. This complexity is more

38 frailtySurv: General Semiparametric Shared Frailty Model in R

Loglikelihood

Score

0

20

40

60

0

20

40

60

50 100 150 200

N

R
un

tim
e

(s
)

R
un

tim
e

(s
)

Gamma LN IG PVF

Figure 15: fitfrail timings using each estimation method for increasing values of n. The
runtime for frailty distributions requiring numerical integration (inverse Gaussian and log-
normal) grows quicker than those with analytic Laplace transforms (gamma and PVF).

0

20

40

60

50 100 150 200

N

R
un

tim
e

(s
)

Gamma LN IG PVF

Figure 16: Timings for the vcov method for ‘fitfrail’ objects for increasing values of n
using the analytic covariance estimator, i.e., with boot = FALSE.

apparent for the log-normal and inverse Gaussian frailty distributions, which both have the
additional overhead of numerical integration. Gamma and PVF frailty distributions have
analytic Laplace transforms, thus numerical integration is not performed in the cumulative
baseline hazard estimation inner loop.
Finally, the runtimes of the vcov method for ‘fitfrail’ objects for each frailty distribution
are shown in Figure 16. This function is also on the order of O

(
n2), and the sandwich

variance estimation procedure is dominated by memory management and matrix operations
to compute the Jacobian. As a result, the runtimes of frailty distributions that require
numerical integration (LN and IG) are only marginally larger than those that do not (gamma
and PVF).

Journal of Statistical Software 39

fitfrail

coxph

frailtyPenal

0

20

40

60

0.00

0.05

0.10

0.15

0.20

0

5

10

15

20

50 100 150 200

N

R
un

tim
e

(s
)

R
un

tim
e

(s
)

R
un

tim
e

(s
)

Gamma LN

Figure 17: Comparison of frailty model estimation runtimes using frailtySurv::fitfrail,
survival::coxph, and frailtypack::frailtyPenal for increasing values of n. fitfrail uses
fitmethod = "score", coxph uses default parameters, and frailtyPenal uses n.knots =
10 and kappa = 2.

C.2. Comparison to other packages

The runtime of fitfrail using fitmethod = "score" is compared to the functions coxph
and frailtyPenal for increasing values of n. The runtimes for gamma and log-normal frailty
distributions are determined, since this is the largest intersection of frailty distributions that
all three functions support. The resulting runtimes are shown in Figure 17. Each estimation
procedure exhibits quadratic complexity on a different scale. coxph remains roughly an order
of magnitude quicker than fitfrail and frailtyPenal for log-normal frailty. frailtyPenal
exhibits a large difference in performance between frailty distributions.

C.3. Speed-accuracy tradeoff

A speed-accuracy tradeoff is achieved by varying the convergence control parameters of the
outer loop estimation procedure and numerical integration in the inner loop. The abstol and
reltol parameters control the outer loop convergence, and int.abstol and int.reltol
control the convergence of the adaptive cubature numerical integration in the inner loop.

40 frailtySurv: General Semiparametric Shared Frailty Model in R

0

50

100

150

−0.2

−0.1

0.0

0.1

0.2

−1.0

−0.5

0.0

0.5

1.0

10010−110−210−310−410−510−610−710−810−9 10010−110−210−310−410−510−610−710−810−9

abstol reltol

R
un

tim
e

(s
)

β
−

β
θ

−
θ

Gamma LN IG PVF

Figure 18: Speed and accuracy curves obtained by varying the outer loop convergence control
parameters, abstol and reltol. As abstol is varied, reltol is set to 0 (i.e., it is ignored),
and vice versa. β̂−β and θ̂−θ are the residuals of regression coefficient and frailty distribution
parameter estimates, respectively. Shaded areas cover the 95% confidence intervals.

Speed is measured by the runtime of fitfrail, and accuracy is measured by the estimated
parameter residuals.

In this set of simulations, the scalar regression coefficient β = log 2, is used. Frailty distri-
bution parameters are chosen such that κ = 0.3 (β = 0.857 for gamma, β = 1.172 for LN,
β = 2.035 for IG, and β = 0.083 for PVF). With N (130, 15) right censorship distribution,
this results in censoring rates 0.25 for gamma and PVF, 0.16 for LN, and 0.30 for IG. Both
the runtime and residuals for β and θ are reported using the "score" fit method.

Figure 18 shows the speed and accuracy curves for increasing values of abstol and reltol on
a log scale, taking on values in {10−9, . . . , 100}. The runtime and residuals remain approxi-
mately constant up to 10−3 for both abstol and reltol. Beyond 10−3, the tradeoff between
runtime and accuracy is apparent, especially for frailty distributions requiring numerical inte-
gration. As the convergence criterion is relaxed, runtime decreases and a bias is introduced to
the parameter estimates. Runtimes for gamma and PVF frailty are nearly identical as these
frailty distributions do not require numerical integration.

Journal of Statistical Software 41

0

200

400

600

−0.10

−0.05

0.00

0.05

0.10

−0.2

−0.1

0.0

0.1

0.2

10010−110−210−310−410−510−610−710−810−9 10010−110−210−310−410−510−610−710−810−9

int.abstol int.reltol

R
un

tim
e

(s
)

β
−

β
θ

−
θ

LN IG

Figure 19: Speed and accuracy curves obtained by varying the inner loop numerical integra-
tion convergence control parameters, int.abstol and int.reltol. As int.abstol is varied,
int.reltol is set to 0 (i.e., it is ignored), and vice versa. β̂−β and θ̂− θ are the residuals of
regression coefficient and frailty distribution parameter estimates, respectively. Shaded areas
cover the 95% confidence intervals.

Figure 19 shows the speed and accuracy curves obtained if the parameters int.abstol and
int.reltol are varied over the same set of values for LN and IG frailty distributions. On
this scale, the decrease in runtime is approximately linear, while residuals of the regression
coefficient and frailty distribution parameters do not significantly change. We verified that
the same behavior occurs using fitmethod = "loglik". This suggests that the estimation
procedure is robust to low-precision numerical integration with which significantly faster
runtimes can be achieved. A strategy for parameter estimation on larger datasets might then
be to first fit a model with a high value of int.abstol or int.reltol and iteratively decrease
the numerical integration convergence until the parameter estimates do not change.

42 frailtySurv: General Semiparametric Shared Frailty Model in R

Affiliation:
John V. Monaco
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943, United States of America
E-mail: vinnie.monaco@nps.edu
URL: http://www.vmonaco.com/

Malka Gorfine
Department of Statistics and Operations Research
Tel Aviv University
Ramat Aviv
Tel Aviv, 6997801, Israel
E-mail: gorfinem@post.tau.ac.il
URL: http://www.tau.ac.il/~gorfinem/

Li Hsu
Public Health Sciences Division
Biostatistics and Biomathematics Program
Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N., M2-B500
Seattle, WA 98109-1024, United States of America
E-mail: lih@fredhutch.org
URL: https://www.fredhutch.org/en/labs/profiles/hsu-li.html

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

August 2018, Volume 86, Issue 4 Submitted: 2015-10-06
doi:10.18637/jss.v086.i04 Accepted: 2017-10-22

mailto:vinnie.monaco@nps.edu
http://www.vmonaco.com/
mailto:gorfinem@post.tau.ac.il
http://www.tau.ac.il/~gorfinem/
mailto:lih@fredhutch.org
https://www.fredhutch.org/en/labs/profiles/hsu-li.html
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v086.i04

	Introduction
	Data generation
	Covariates
	Baseline hazard
	Shared frailty
	Cluster sizes
	Censoring
	Rounding
	Examples

	Model estimation
	Log-likelihood
	Score equations
	Baseline hazard
	Standard errors
	Control parameters
	Model object

	Simulation
	Case study
	Diabetic Retinopathy Study
	Hard drive failure

	Discussion
	Frailty distributions
	Gamma
	Power variance function
	Log-normal
	Inverse Gaussian

	Simulation results
	Benchmark simulation
	Large clusters
	Discrete observation times
	Oscillating baseline hazard
	Power variance function frailty
	Poisson cluster sizes
	Log-normal frailty
	Inverse Gaussian frailty

	Performance analysis
	Core functions
	Comparison to other packages
	Speed-accuracy tradeoff

