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Abstract—We present a bottom up review of complex numbers 
through analytical functions commonly used in digital signal 
processing.  Standard practice uses complex exponential functions 
for engineering and physics problems including differential 
equations, electrical engineering, analog and digital signal 
processing, control systems, mechanical vibrations, and wave 
propagation.  We often use these methods by rote.  In this paper, 
we review complex math and aim to fill common knowledge gaps 
in digital signal processing. 
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I. INTRODUCTION 
Complex numbers, exponential functions, and analytical 

functions are the fundamental mathematics for digital signal 
processing (DSP).  We often apply complex numbers by rote 
without giving the special properties of complex numbers much 
thought.  Complex exponential functions have several names 
thanks to their many useful properties. 

Following the fundamentals from baseball, if you can’t make 
the simple catch, you won’t last long in big league baseball.  We 
will review the fundamentals of complex numbers, and 
hopefully, improve understanding.  With a strong foundation, 
the properties of complex exponentials can be effectively 
leveraged.  In this paper, we have included a number of 
refinements and additions over the technical report appendix in 
[1], covering operator overloading, direction vectors, insight 
into the square root definition, and additional material on 
complex exponential functions.  “… in mathematics, you don’t 
understand things.  You just get used to them.”  John von 
Neumann [2].  Now, that we are used to solving problems using 
complex exponentials; hopefully, we can re-tell the story and 
improve comprehension. 
 

II. NUMBER LINE AND DISTANCE 
Following the baseball fundamental analogy, we start from 

the fundamentals and return to the simple number line.  We will 
take a detour and use East and West number line to provide a 
foundation for the algebra class engraved fact:   
(−1)(−1) = +1.  The East  and West direction vectors provide 

a basis for the +  and −  direction vectors used on a one 
dimensional number line.  The number line examples help 
bridge the gap to introduce the imaginary number,  𝑗𝑗 = √−1 , in 
section III. 

A. Distance and the Number Line 

 
Fig. 2.1.  Number Line and Distance. 

 
Our common sense idea of distance is the number of steps 

from point 𝐴𝐴 to point 𝐵𝐵.  In Fig. 2.1, we provide two examples 
of distance, which is always a positive number.  Keep in mind 
that rulers measure distance in cm or inch scales without regard 
to negative numbers.  For example, (2.1) defines the distance 
between points 𝐴𝐴 and 𝐵𝐵 on the number line.  In (2.2) stepping a 
little ahead, we have 3 − 5 = −2 .  Comparing the arrows in 
Fig. 2.1, we see that for 𝑑𝑑 = |3 − 5| = | − 2| = 2, we have 2 steps 
in the opposite direction (to the left).  Fig. 2.1 introduces 
direction vectors for positive and negative numbers.  We will 
show the imaginary number, 𝑗𝑗 = √−1, is a direction vector like 
(+1) and (−1). 
 
𝑑𝑑 = |𝐵𝐵 − 𝐴𝐴| = |4 − 1| = 3  (2.1) 

 

𝑑𝑑 = |3 − 5| = |−2| = 2    (2.2) 
 

The math operators, + and −, are overloaded.  Here, we 
have borrowed a concept from computer science.  An 
overloaded operator (or function) has multiple definitions 
depending on its context.  We use + and − symbols for addition 
and subtraction.  We also use +  and −  symbols to indicate 
direction (for +, the direction is to the right, and for −, the 
direction is to the left ).  In order to help separate the overloaded 
operations, we will start with a number line using East and West 
directions.  This extra step will help explain the entrenched 
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algebra equation:  (−1)(−1) = +1.  The East-West number line 
will also help explain, the definition for square root and 𝑗𝑗 = √−1 
imaginary number definition.   

B.  Direction Vectors 

 
Fig. 2.2.  East-West Number Line Example. 

 

 
Fig. 2.3.  Rewritten Fig. 2.2 using + for East and – for West. 
 

Fig. 2.2 shows a number line with East and West directions:  
East to the right and West to the left.  Although this is simple 
math, we intend to use a similar explanation to define the 
imaginary number 𝑗𝑗 = √−1.  Operators + and − are overloaded 
since, we use the + symbol for addition (5 + 3) and direction to 
the right ( +4  on a number line), and the −  symbol for 
subtraction (7 − 2) and direction to the left (−9 on a number 
line).  Equation (2.3) shows the distance from point 2W (2 West) 
to point 3E (3 East).  From the number line, the distance is 5. 

𝑑𝑑 = |3𝐸𝐸 − 2𝑊𝑊| = 5  (2.3) 
 

Since West is the opposite direction of East, we can define 
West as 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =  − 𝐸𝐸𝐸𝐸𝑊𝑊𝑊𝑊 (see section II.A, and Fig. 2.1-2.3).  In 
Equation (2.4), we replace 𝑊𝑊  with −𝐸𝐸 .  The length of the 
direction vector 𝐸𝐸 is |𝐸𝐸| = 1.  In (2.4), we have −2(−𝐸𝐸) where 
−2 is subtraction and (−𝐸𝐸) is the opposite direction of East.  We 
can rearrange −2(−𝐸𝐸)  to 2(−1)(−1)𝐸𝐸 = 2(−1)2𝐸𝐸 .  We know 
the distance is 5, so (−1)2𝐸𝐸  is equivalent to addition, +𝐸𝐸 , in 
(2.4).  Fig. 2.3 and (2.5) help separate addition and subtraction 
from the direction vectors (+1)  and (−1) .  Building on the 
concept of operator overloading and direction vectors, we will 
introduce the imaginary number and show 𝑗𝑗 = √−1 is a direction 
vector like (+1) and (−1). 

 
𝑑𝑑 = |3𝐸𝐸 − 2𝑊𝑊|  = |3𝐸𝐸 + [−2(−𝐸𝐸)]| 
    = |3𝐸𝐸 + (−1)(−1)2𝐸𝐸| = |3𝐸𝐸 + 2(−1)2𝐸𝐸| 
    = |3𝐸𝐸 + (+1)2𝐸𝐸| = |5𝐸𝐸| = 5|𝐸𝐸| = 5 ∙ 1 = 5 

 (2.4) 

 

 
𝑑𝑑 = |(+3) − (−2)| = |(+3) + (−1)2(2)| 
    = |(+3) + (+1)2| = |3 + 2| = 5  (2.5) 

 

 
Fig. 2.4.  Direction Vectors’ Summary 

We summarize number line direction vectors in Fig. 2.4.  We 
can locate points using East or West of the origin (0 position) or 
+ or − directions from the origin.  Fig. 2.4 shows the distance 
is 5 from 2𝑊𝑊  to 3𝐸𝐸  and the distance is 5 from -2 to +3.  
Equations (2.4) and (2.5) emphasize direction vectors (East and 
West) and (+1 and −1), and summarize computing distance. 

C. Complex Number Introduction 

 
Fig. 2.5.  Coordinate System Comparison 

 
In Fig. 2.5, we extend the 1-dimensional number line to a 2-

dimensional (Cartesian) plane.  We show three different ways to 
represent points using map directions (North, South, East, and 
West), (x-axis, and y-axis) and complex number format.  For the 
points located using x-axis and y-axis, the directions + / − refer 
to right/left or up/down.  The x-axis direction vector is 
represented by �⃗�𝑥  and the y-axis is �⃗�𝑦 .  The x-axis and y-axis 
direction vectors both have unit length.  We use notation 1𝑥𝑥 and 
1𝑦𝑦 to emphasize that the x-axis and y-axis direction vectors have 
a length of 1. 
 

(𝑥𝑥, 𝑦𝑦) = (−1, +1) = −1�⃗�𝑥 + 1�⃗�𝑦 = (1 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊, 1 𝑁𝑁𝑁𝑁𝑁𝑁𝑊𝑊ℎ) (2.6) 

𝑥𝑥 + 𝑗𝑗 𝑦𝑦 = −1 + 1𝑗𝑗    (2.7) 
(𝑥𝑥, 𝑦𝑦) = (+1,−2) = +1�⃗�𝑥 − 2�⃗�𝑦 = (1 𝐸𝐸𝐸𝐸𝑊𝑊𝑊𝑊, 2 𝑆𝑆𝑁𝑁𝑆𝑆𝑊𝑊ℎ) (2.8) 

𝑥𝑥 + 𝑗𝑗 𝑦𝑦 = +1 − 2𝑗𝑗  (2.9) 
 

Fig. 2.5 locates points in (2.6)-(2.9) using all three 
coordinate systems.  For example, the point,     (𝑥𝑥,𝑦𝑦) = (−1, +1), 
is mapped to −1�⃗�𝑥 + 1�⃗�𝑦  and (1 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊, 1 𝑁𝑁𝑁𝑁𝑁𝑁𝑊𝑊ℎ).  The complex 
number, −1 + 1𝑗𝑗, also maps to the same point.  The imaginary 
number 𝑗𝑗 = √−1 is a direction vector like North, South, East, 
West, (+1), (−1), �⃗�𝑥, or �⃗�𝑦.  The length or magnitude of 𝑗𝑗 = √−1 
is also 1.  In section III, we will show the imaginary number, 
𝑗𝑗 = √−1, is a direction vector with a set of useful properties. 

In summary, 𝑗𝑗 = √−1, (−𝑗𝑗), (+1) and (−1) are direction 
vectors.  We have already looked at the two properties:  
(+1)(+1) = (+1)2 = +1  and (−1)(−1) = (−1)2 = +1.   In 
section III.C, we will consider the properties of the imaginary 
direction vector:  𝑗𝑗1,  𝑗𝑗2,  𝑗𝑗3,  𝑗𝑗4 ⋯ . 

III. COMPLEX NUMBERS 
The complex number, 𝑆𝑆 = +4 + 3𝑗𝑗, contains two parts.  The 

number +4 is a real number just like the real numbers on the 
East-West, or +  / −  number lines in Fig. 2.4.  The imaginary 
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number +3𝑗𝑗 also contains the real number +3.  In this section, 
we will define the square root of (−1) as 𝑗𝑗 = √−1 using the 
direction vectors covered in section II.  We first look at the 
definition of the square root in Fig. 3.1 and how the square root 
function, 𝑦𝑦(𝑥𝑥) = √𝑥𝑥, in (3.1) maps positive x-values to positive 
y-values.  The mapping is the key to understanding imaginary 
numbers.  We will show complex numbers are ‘mostly 
harmless’ [3] and very useful for DSP. 

A. Square Root 

 
Fig. 3.1.  Graph for 𝑦𝑦(𝑥𝑥) = √𝑥𝑥 for 𝑥𝑥 ≥ 0 

 
By definition, the square root function in Fig. 3.1 and (3.1) 

maps positive x-axis (East) values to positive y-axis values 
(North).  The x-axis (1𝑥𝑥) and y-axis (1𝑦𝑦) direction vectors will 
help explain the definition for the square root function, √𝑥𝑥. 

We write the square root equation, 𝑦𝑦(𝑥𝑥) = √𝑥𝑥 , in a more 
general form using direction vectors in equation (3.2).  Equation 
(3.2) will be used to define the square root of a negative number.  
For 𝑥𝑥 = +9 , we write 𝑥𝑥 = 9(+1𝑥𝑥)  where +1𝑥𝑥  represents the 
positive x-axis direction vector, the square root function in 
equation (3.3) gives 𝑦𝑦(𝑥𝑥) = 3�+1𝑦𝑦� where �+1𝑦𝑦� is the positive 
y-axis direction vector.  The square root function maps (+1𝑥𝑥) to 
�+1𝑦𝑦� = �(+1𝑥𝑥)2 as illustrated in Fig. 3.1. 
 

𝑦𝑦(𝑥𝑥) = √𝑥𝑥 for 0 ≤ 𝑥𝑥 < ∞, gives  0 ≤ 𝑦𝑦 < ∞     (3.1) 
 

𝑦𝑦(𝑥𝑥) = �𝑥𝑥(+1𝑥𝑥)      (more general definition)      (3.2) 
 

 

(3.3) 

 

B. Imaginary Direction Vector 
In Fig. 3.1, we see that the square root function maps positive 

x-axis values to the positive y-axis values.  Following the 

intuition in Fig. 3.1, we want the square root function to map 
negative x-axis values to a new positive axis (see Fig. 3.2).   

We reconsider the square root function in (3.4).  Remember, 
positive x-axis values, (+1𝑥𝑥) , are mapped to positive y-axis 
values 1𝑦𝑦 = �(+1𝑥𝑥)2 .  Negative x-axis values, (−1𝑥𝑥) , are 
mapped to positive values on a new axis (z-axis):  where 
𝑧𝑧 = �(−1)(1𝑥𝑥)2 and �(−1)(1𝑥𝑥)2 is the new direction vector.  We 
define the new direction vector as  𝑗𝑗 ≡ �(−1)(1𝑥𝑥)2.  In Equation 
(3.5), we rewrite the square root Equations (3.3) and (3.4) in 
standard form.  The constant, 𝑗𝑗 = +√−1, is a direction vector 
with useful properties.   
 

 

(3.4) 

 
𝑦𝑦(𝑥𝑥) = � √𝑥𝑥           for 0 ≤ 𝑥𝑥 < ∞

 𝑗𝑗�|𝑥𝑥|, for −∞ < 𝑥𝑥 < 0
 

             where 𝑗𝑗 = √−1 is a direction vector  
(3.5) 

 

 
Fig. 3.2.  Graph for 𝑦𝑦(𝑥𝑥) = √𝑥𝑥 for 𝑥𝑥 < 0. 

 
In Fig. 3.2, we add a z-axis for the imaginary axis 𝑗𝑗 = +√−1.  

We see the square root function maps negative x values (−∞ <
𝑥𝑥 < 0) to the positive imaginary axis 𝑗𝑗 = +√−1 (z-axis).  For 
negative x values (−∞ < 𝑥𝑥 < 0), we have 𝑦𝑦(𝑥𝑥) = 𝑗𝑗�|𝑥𝑥| .  For 
positive x values, 0 ≤ 𝑥𝑥 < ∞, we have the standard square root 
function, 𝑦𝑦(𝑥𝑥) = √𝑥𝑥.  For positive x values, we have x-axis (+1𝑥𝑥) 
direction vector mapped to y-axis (+1𝑦𝑦) direction vector.  For 
negative x values, −∞ < 𝑥𝑥 < 0, we have x-axis (−1𝑥𝑥) direction 
vector mapped to z-axis (+𝑗𝑗 ) direction vector.  Fig. 3.2 shows 
direction vectors simplify understanding imaginary numbers.  In 
summary, square root function preserves the mapping of x-axis 
values to positive y-axis and to positive imaginary axis values:  
+1𝑥𝑥 is mapped to +1𝑦𝑦 and −1𝑥𝑥 is mapped to +𝑗𝑗. 

The complex number in (3.6) consists of two parts:  a real 
number, −4, + (addition) and an imaginary number, +3𝑗𝑗.  The 

-4

-3

-2

-1

0

1

2

3

4

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

+ y-axis
+ x-axis

- y-axis
+ x-axis

- y-axis
- x-axis

+ y-axis
- x-axis

WEST

EAST

SOUTH

NORTH

By definition, 
the square root 
function maps 
positive x-axis 
(East) values to 
positive y-axis 
values (North).

9

)

)

+9
More 

General
Definition y-

ax
is 

Di
re

ct
io

n 
ve

ct
or

Mapping from Fig. 3.1 showing 
(+x axis) mapped to (+y axis)

Definition of 

Mapping from Fig. 3.2 showing 
(+x axis) mapped to (+j axis)

Definition of 

-4

-3

-2

-1

0

1

2

3

4

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

+ y-axis
+ x-axis

- y-axis
+ x-axis

- y-axis
- x-axis

+ y-axis
- x-axis

WEST EAST

SOUTH

NORTH

j = axis

4

2
3

1

4

2
3

1



imaginary number +3𝑗𝑗 also contains the real number +3.  A 
similar coordinate is the (x, y) Cartesian coordinate (−4, +3).  In 
Fig. 2.5, we compared Cartesian coordinates to complex 
numbers.  Cartesian coordinates have �⃗�𝑥 and �⃗�𝑦 direction vectors.  
Complex numbers have �⃗�𝑥 direction and 𝑗𝑗 direction vectors. 

𝑆𝑆 = −4 + (+3𝑗𝑗) 
    = −4 + 3𝑗𝑗 

Complex number consisting of a 
real number (−4) and imaginary 
number (+3𝑗𝑗). 

(3.6) 

 
In the 1600’s, the constant, 𝑗𝑗 = +√−1, was unfortunately 

named imaginary number.  ‘Imaginary’ numbers are very useful 
for math and engineering.  We will show the complex 
exponential, 𝑊𝑊𝑗𝑗(𝜔𝜔𝜔𝜔+𝜑𝜑), has several useful properties for digital 
signal processing. 

C. Imaginary Number Properties 
We begin by looking at the periodic properties of (+1)𝑛𝑛 and 

(−1)𝑛𝑛.  In (3.7), we see that (+1)𝑛𝑛 is a constant.  In (3.8), we 
show (−1)𝑛𝑛 is periodic with (−1)𝑛𝑛 = +1,−1, +1,−1 ⋯ with 
a cycle length of 2.  On a number line there are two direction 
vectors, (+1), and (-1).   

The function 𝑗𝑗𝑛𝑛  in Equation (3.9) is periodic;  
𝑗𝑗𝑛𝑛 = +1, +𝑗𝑗, −1, −𝑗𝑗, +1, ⋯ with a cycle length of 4.  For a 
complex number, we need 4 direction vectors, (+1), (-1), (+𝑗𝑗), 
and (-𝑗𝑗) to plot a point on the plane.  We can compare the 
direction vectors for a number line to the direction vectors for 
the complex plane.  The function (−1)𝑛𝑛 has a cycle length of 2 
and describes the two direction vectors, (+1) and (-1) in (3.8).  
The function 𝑗𝑗𝑛𝑛 has a cycle length of 4 and describes the four 
direction vectors for the complex plane in (3.9). 

 
  (+1)(+1)⋯ (+1) = (+1)𝑛𝑛 = +1        (3.7) 
 

(−1)(−1)⋯ (−1) = (−1)𝑛𝑛 = �+1 𝑛𝑛 = even
−1 𝑛𝑛 = odd     (3.8) 

 
 
 
𝑗𝑗0 = +1 
𝑗𝑗1 = +𝑗𝑗 
𝑗𝑗2 = �√−1 �

2
= −1 

𝑗𝑗3 = 𝑖𝑖2𝑖𝑖 = (−1)𝑗𝑗 = −𝑗𝑗 
𝑗𝑗4 = 𝑗𝑗2𝑗𝑗2 = (−1)(−1) = +1 
𝑗𝑗5 = 𝑗𝑗1𝑗𝑗4 = 𝑗𝑗(+1) = +𝑗𝑗 

⋮ 

 

 

𝑗𝑗𝑛𝑛 = �

+𝑗𝑗 𝑛𝑛 = 1, 5, 9,⋯  
−1 𝑛𝑛 = 2, 6, 10,⋯
−𝑗𝑗 𝑛𝑛 = 3, 7, 11,⋯
+1 𝑛𝑛 = 0, 4, 8,⋯  

 

 

                                      (3.9) 
 

IV. COMPLEX EXPONENTIAL 
Complex exponentials have two very useful properties for 

digital signal processing.  First, frequency translation and phase 
shift only require a multiplication.  Second, integration and 
derivative operations are simple for complex exponential 
functions.  The importance of the complex exponential is found 
in the equation, 𝑊𝑊𝑗𝑗𝑗𝑗 + 1 = 0.  It summarizes five of the most 
important concepts in mathematics:  0, 1, 𝑗𝑗 = √−1, 𝜋𝜋, and 𝑊𝑊𝑥𝑥 
function.  The imaginary number can also be written in terms of 
a complex exponential, 𝑗𝑗 = 𝑊𝑊𝑗𝑗

𝜋𝜋
2 .   A standard time domain 

function, 𝑥𝑥(𝑊𝑊) , is not a complex exponential function.  The 

Hilbert transform converts a standard time domain function, 
𝑥𝑥(𝑊𝑊), into an analytic function.  An analytic function has the 
same frequency translation and phase shift properties as a 
complex exponential function. 

We present an introduction to complex exponential 
functions in section IV.A followed by properties of complex 
exponentials in section IV.B.  Section IV.C covers rotating 
vectors for steady state alternating current circuits (forced 
differential equations).  Section IV.D introduces analytical 
functions.  Analytical functions have the same frequency 
translation and phase shift properties as complex exponential 
functions.  Section IV.D introduces the Hilbert transform which 
converts a real time domain function into an analytic function.  
We present a simple software defined radio example using the 
Hilbert transform and frequency translation in section V. 

A. Complex Exponential Introduction 

 
Fig. 4.1.  Complex Exponential Function. 

 
 

Fig. 4.1 illustrates several properties of the complex 
exponential in (4.1)-(4.3).  The center of the figure shows the 
complex exponential maps out a helix in 3 dimensions.  By 
projecting the helix onto the complex plane, we see 𝑊𝑊𝑗𝑗𝑗𝑗𝜔𝜔 has a 
radius or magnitude of 1.  For the time axis projection, we see 
the cosine and sine terms from Euler’s formula in (4.3).  In 
Equation (4.2), the phase term is replaced by the complex 
constant A.  We will revisit (4.2) in section IV.B on rotating 
vectors. 
 

 

(4.1) 
 
 
 

(4.2) 
 
 
 
 

(4.3) 

 
We can derive Euler’s formula in (4.3) using the infinite 

series for sine in (4.4), cosine in (4.5) and 𝑊𝑊𝑥𝑥 in (4.6).  In (4.7), 
we complete the derivation of Euler’s formula using the 
properties of 𝑗𝑗𝑛𝑛 from section III.C. 
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cos(𝑥𝑥) = 1 − 𝑥𝑥2

2!
+ 𝑥𝑥4

4!
− 𝑥𝑥6

6!
+ ⋯        (4.4) 

 

sin(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥3

3!
+ 𝑥𝑥5

5!
− 𝑥𝑥7

7!
+ ⋯        (4.5) 

 

𝑊𝑊𝑥𝑥 = 1 + 𝑥𝑥 + 𝑥𝑥2

2!
+ 𝑥𝑥3

3!
+ 𝑥𝑥4

4!
+ ⋯        (4.6) 

 

𝑊𝑊𝑗𝑗𝑗𝑗𝜔𝜔 = 1 + 𝑗𝑗𝑗𝑗𝑊𝑊 + (𝑗𝑗𝑗𝑗𝜔𝜔)2

2!
+ (𝑗𝑗𝑗𝑗𝜔𝜔)3

3!
+ (𝑗𝑗𝑗𝑗𝜔𝜔)4

4!
+ (𝑗𝑗𝑗𝑗𝜔𝜔)5

5!
+ ⋯           (4.7) 

 

𝑊𝑊𝑗𝑗𝑗𝑗𝜔𝜔 = �1 +
( 𝑗𝑗𝑗𝑗𝑊𝑊)2

2! + ⋯�  +  �𝑗𝑗𝑗𝑗𝑊𝑊 +
( 𝑗𝑗𝑗𝑗𝑊𝑊)3

3! +  ⋯  � 
 

𝑊𝑊𝑗𝑗𝑗𝑗𝜔𝜔 = �1 −
(𝑗𝑗𝑊𝑊)2

2! +
(𝑗𝑗𝑊𝑊)4

4! −⋯   �+ 𝑗𝑗 �𝑗𝑗𝑊𝑊 +
𝑗𝑗2(𝑗𝑗𝑊𝑊)3

3! + ⋯� 
 

𝑊𝑊𝑗𝑗𝑗𝑗𝜔𝜔 cos(𝑗𝑗𝑊𝑊) + 𝑗𝑗 �𝑗𝑗𝑊𝑊 −
(𝑗𝑗𝑊𝑊)3

3! +
(𝑗𝑗𝑊𝑊)5

5! +  ⋯     � 
 

𝑊𝑊𝑗𝑗𝑗𝑗𝜔𝜔 = cos(𝑗𝑗𝑊𝑊) + 𝑗𝑗sin(𝑗𝑗𝑊𝑊)       also see (4.3) 
 

B. Complex Exponential Properties 
The complex exponential has several useful properties.  

Integration and differentiation are simple for the complex 
exponential function.  For digital signal processing, frequency 
translation and phase shift only require a multiplication.  The 
frequency and phase shift properties greatly simplify digital 
signal processing.  We will present a short software defined 
radio example in section V using complex exponentials and the 
Hilbert transform. 

The derivative of a complex exponential is a constant times 
the original function as shown in (4.8).  For integration, (4.9) 
shows the integral is also a constant times the original function 
plus a constant of integration.  Rotating vectors in section IV.C 
make use of the constant times the original function property 
from (4.8).  

For 𝑥𝑥(𝑊𝑊) = 𝑊𝑊𝑗𝑗𝑗𝑗𝜔𝜔, 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑥𝑥(𝑊𝑊)] = 𝑗𝑗𝑗𝑗𝑊𝑊𝑗𝑗𝑗𝑗𝜔𝜔 = 𝑗𝑗𝑗𝑗𝑥𝑥(𝑊𝑊)         (4.8) 

For 𝑥𝑥(𝑊𝑊) = 𝑊𝑊𝑗𝑗𝑗𝑗𝜔𝜔, ∫𝑥𝑥(𝑊𝑊)𝑑𝑑𝑊𝑊 = 1
𝑗𝑗𝑗𝑗
𝑊𝑊𝑗𝑗𝑗𝑗𝜔𝜔 + 𝐶𝐶 = 1

𝑗𝑗𝑗𝑗
𝑥𝑥(𝑊𝑊) + 𝐶𝐶       (4.9) 

 

Equation (4.10) illustrates complex exponentials and 
multiplication.  The product of two complex signal sources 
creates a single sum frequency term, ( 𝑓𝑓1 + 𝑓𝑓2).  The product of 
two cosine functions in (4.11) produces a more complicated 
result with sum, ( 𝑓𝑓1 + 𝑓𝑓2), and difference, ( 𝑓𝑓1 − 𝑓𝑓2), frequency 
terms.  Phase shift in (4.10) only requires a complex 
multiplication.  If DSP data is in terms of complex exponentials, 
frequency translation and phase shift are straightforward, as 
illustrated in Fig. 4.1.  The product of complex signal sources is 
a single frequency sum term.  Phase shift only requires 
multiplication by a complex constant. 

 

(4.10) 

 
 

cos(2π𝑓𝑓1𝑊𝑊)cos(2π𝑓𝑓2𝑊𝑊) = 1
2
[cos(2π(𝑓𝑓1−𝑓𝑓2)𝜔𝜔)+cos(2π(𝑓𝑓1+𝑓𝑓2)𝜔𝜔)]     (4.11) 

 
Fig. 4.1.  Frequency Translation and Phase Shift 

 

C. Rotating Vectors 
A rotating vector is another name for a complex exponential.  

For steady state electrical circuits, rotating vectors, or phasors, 
reduce solving a circuit problem to algebra.  We start from a 
differential equation in (4.12) with an input of the form 
𝑣𝑣𝑖𝑖𝑛𝑛(𝑊𝑊) = 𝐴𝐴𝐴𝐴𝑁𝑁𝑊𝑊(𝜔𝜔𝑊𝑊 + 𝜙𝜙) in (4.13). 
𝑑𝑑2

𝑑𝑑𝑑𝑑2
𝑣𝑣𝑜𝑜𝑜𝑜𝜔𝜔(𝑊𝑊) + 4 𝑑𝑑

𝑑𝑑𝑑𝑑𝑣𝑣𝑜𝑜𝑜𝑜𝜔𝜔(𝑊𝑊) + 3𝑣𝑣𝑜𝑜𝑜𝑜𝜔𝜔(𝑊𝑊) = 𝑣𝑣𝑖𝑖𝑛𝑛(𝑊𝑊)                  (4.12) 
 
𝑣𝑣𝑖𝑖𝑛𝑛(𝑊𝑊) = √2𝐴𝐴𝑁𝑁𝑊𝑊 �2𝑊𝑊 + 𝑗𝑗

4
� ⟹ 𝑉𝑉𝑖𝑖𝑛𝑛( 𝑗𝑗𝜔𝜔) = 𝐴𝐴

√2
𝑊𝑊𝑗𝑗(𝜔𝜔𝜔𝜔+𝜙𝜙) ⟹ 

𝑉𝑉𝑖𝑖𝑛𝑛( 𝑗𝑗𝜔𝜔) = 𝑊𝑊𝑗𝑗
𝜋𝜋
4     (convert 𝑣𝑣𝑖𝑖𝑛𝑛(𝑊𝑊) to phasor form)     (4.13) 

 
We convert 𝑣𝑣𝑖𝑖𝑛𝑛(𝑊𝑊) into the phasor, 𝑉𝑉𝑖𝑖𝑛𝑛( 𝑗𝑗𝜔𝜔) = 𝑊𝑊𝑗𝑗

𝜋𝜋
4, using the 

complex exponential-cosine transform property in (4.13).  Since 
the radian frequency is a constant, the 𝑊𝑊𝑗𝑗𝜔𝜔𝜔𝜔 term does not affect 
the amplitude or phase.  We drop the 𝑊𝑊𝑗𝑗𝜔𝜔𝜔𝜔 term to save ink. 

Using the property for complex exponentials in (4.8), we 
convert (4.12) into phasor form in (4.14).  We solve for 𝑉𝑉𝑜𝑜𝑜𝑜𝜔𝜔 in 
(4.15) where 𝜔𝜔 = 2𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟𝑠𝑠𝑠𝑠
.  In (4.16), we convert the 𝑉𝑉𝑜𝑜𝑜𝑜𝜔𝜔( 𝑗𝑗𝜔𝜔) 

phasor form back into the time domain, 𝑣𝑣𝑜𝑜𝑜𝑜𝜔𝜔(𝑊𝑊). 
 
( 𝑗𝑗𝜔𝜔)2𝑉𝑉𝑜𝑜𝑜𝑜𝜔𝜔( 𝑗𝑗𝜔𝜔) + 4( 𝑗𝑗𝜔𝜔)𝑉𝑉𝑜𝑜𝑜𝑜𝜔𝜔( 𝑗𝑗𝜔𝜔) + 3𝑉𝑉𝑜𝑜𝑜𝑜𝜔𝜔( 𝑗𝑗𝜔𝜔) = 𝑉𝑉𝑖𝑖𝑛𝑛( 𝑗𝑗𝜔𝜔)    
                              (phasor equation form)                        (4.14) 
 

𝑉𝑉𝑜𝑜𝑜𝑜𝜔𝜔( 𝑗𝑗𝜔𝜔) = 𝑉𝑉𝑟𝑟𝑟𝑟(𝑗𝑗𝜔𝜔)
(3+4𝑗𝑗𝜔𝜔−𝜔𝜔2)

    =    𝑒𝑒𝑗𝑗
𝜋𝜋
4

(−1+8𝑗𝑗)
= 0.124𝑊𝑊+𝑗𝑗2.23            (4.15) 

 
𝑉𝑉𝑜𝑜𝑜𝑜𝜔𝜔( 𝑗𝑗𝜔𝜔) = 0.124𝑊𝑊𝑗𝑗0.710𝜋𝜋 ⟹ 𝑣𝑣𝑜𝑜𝑜𝑜𝜔𝜔(𝑊𝑊) = 0.124√2𝐴𝐴𝑁𝑁𝑊𝑊(2𝑊𝑊 + .710𝜋𝜋)      

               (convert 𝑉𝑉𝑜𝑜𝑜𝑜𝜔𝜔 to time domain)      (4.16) 

 
We have presented a brief introduction to rotating vectors or 

phasors in section IV.C.  Understanding the properties of 
complex exponential functions necessarily supports the 
understanding of rotating vectors. 

D. Hilbert Transform and Analytic Functions 
In Fig. 4.2, we convert a simple cosine function into an 

analytic function.  An analytic function only contains positive 
complex exponential terms, 𝑊𝑊+𝑗𝑗𝑗𝑗𝜔𝜔.  Real functions, like cosine, 
have symmetric complex exponential terms, 𝑊𝑊+𝑗𝑗𝜔𝜔𝜔𝜔  and 𝑊𝑊−𝑗𝑗𝜔𝜔𝜔𝜔 
(Fourier transform is symmetric).  To convert a general real 
function, 𝑁𝑁(𝑊𝑊), into an analytic function, we “simply” zero out 
the negative complex exponential terms in 𝑅𝑅( 𝑗𝑗𝜔𝜔) as illustrated 
in Fig. 4.3.  Fig. 4.4 shows a Hilbert filter implemented as a low 
pass digital filter to convert a real function, 𝑁𝑁(𝑘𝑘𝑘𝑘) , into an 
analytic function, 𝐸𝐸(𝑘𝑘𝑘𝑘). 
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Figure 4.2.  Analytic Signal Transform 

 

 
Figure 4.3.  Real to Analytic Signal Transform 

 
 

 
Fig. 4.4.  Real Function to Analytic Function Block Diagram 

 

          
Fig. 5.1.  Simplified Software Defined Radio Architecture 

V. SOFTWARE DEFINED RADIO 
Important features for a basic software defined radio are 

presented in Fig. 5.1.  A Hilbert transform is used to convert the 
output of the analog-to-digital converter to an analytic signal.  A 
complex multiply is used for frequency translation.  Audio, 
video, internet packets, etc. are recovered from the 
demodulation stage. 

VI. CONCLUSION. 
We have reviewed the fundamental mathematics for digital 

signal processing (DSP):  complex numbers, exponential 
functions and analytical functions.  We presented a review of 
direction vectors to provide a solid foundation to explain 
imaginary numbers.  Using the direction vectors, (+1), and (-1), 
we show 𝑗𝑗 = √−1 is another direction vector.  We also show that 
the direction vector 𝑗𝑗 = √−1  extends the connection between 
(−1) and (+1) direction vectors.  The cycle length for (−1)𝑛𝑛 
sequence is 2.  We show the cycle length of ( 𝑗𝑗)𝑛𝑛 is 4 and how it 
is an extension of (−1)𝑛𝑛. 

With a solid foundation, we only need a few paragraphs to 
cover the properties of complex exponentials, and review 
rotating vectors.  We have illustrated the utility of complex 
exponential functions for digital signal processing in section IV.  
The paper concludes with a brief introduction to the Hilbert 
transform in Fig. 4.4 and some software defined radio 
fundamentals in Fig. 5.1. 
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