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ABSTRACT
Computer users commonly experience interaction anomalies,
such as the text cursor jumping to another location in a doc-
ument, perturbed mouse pointer motion, or a disagreement
between tactile input and touch screen location. These anoma-
lies impair interaction and require the user to take corrective
measures, such as resetting the text cursor or correcting the
trajectory of the pointer to reach a desired target. Impairments
can result from software bugs, physical hardware defects, and
extraneous input. However, some designs alter the course of
interaction through covert impairments, anomalies introduced
intentionally and without the user’s knowledge. There are
various motivations for doing so rooted in disparate fields in-
cluding biometrics, electronic voting, and entertainment. We
examine this kind of deception by systematizing four different
ways computer interaction may become impaired and three
different goals of the designer, providing insight to the design
of systems that implement covert impairments.
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INTRODUCTION
This work is concerned with the subtle anomalies that occur
during human computer interaction. Examples include the text
cursor suddenly jumping to another location in a document,
perturbations in the motion of the pointer diverting its trajec-
tory, or a disagreement between tactile input and touch screen
location. These anomalies impair interaction in the sense that
they generally contradict the user’s intentions and influence
the user’s behavior. Such anomalies can go undetected by the
user and may even be corrected unconsciously. Their cause
may be legitimately attributed to a software bug, physical hard-
ware defect, or extraneous input to a peripheral device. As a
result, users have acclimated to their presence [73].
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Recent research, commercial products, and cyber attacks have
leveraged this phenomenon by intentionally creating interac-
tion anomalies to influence users. We refer to this as a covert
impairment. They are covert in the sense that the anomalies
either go undetected by the user or may be erroneously at-
tributed to another source without the user’s awareness of the
designer’s intentionality. They are impairments in the sense
that the anomalies elicit a reaction from the user that would
not have been performed otherwise and alter course of interac-
tion. Unlike dark patterns [40], covert impairments implement
deceit through interaction itself rather than the user interface,
i.e., there’s no deceit without interaction. We formally define
covert impairments in the next section.

The motivations for this practice vary across fields, where
tactics employed range from subtle to obvious. Covert impair-
ments are leveraged as both a defense and an attack in cyber-
security. Reactions tend to be characteristic of the individual
or a demographic attribute common to a group of users, which
lends this technique to aid in user identification and profiling
[78]. Such manipulation goes beyond traditional behavioral
biometrics [2], which passively observe an individual’s be-
havior for the purpose of identification or authentication, to
that of making active measurements. They are additionally
used to detect automated software, or bots [84]. In this way,
the impairments elicit a reaction that suggests the presence of
a human user, assuming it would be difficult for a machine
to replicate. As an attack, covert impairments are a coercion
technique that alter the user’s perception of interaction in a
way that leads to an outcome chosen by the designer.

In cognitive science, this technique is used to induce cho-
sen affective states, such as stress or anxiety. Artificially
delaying keyboard events during gameplay has been shown
to cause stress [72]. Likewise, randomly dropping mouse mo-
tion events, which causes the pointer to stop moving, induces
frustration [76]. These kinds of impairments are well studied
in human computer interaction when occurring “naturally”,
such as from network lag or high system load [70]. Both
large amounts of lag and dropout can seriously degrade task
performance [53].

Little is known about the practice of covert impairments and
how users react to them. Most efforts have considered impair-
ments from legitimate sources, i.e., unintentional impairments
such as network lag [53, 30, 70] or poor user interface design
[57]. However, the use of covert impairments outside of the
HCI community is widespread. The idea has been patented
several times over [78, 83], is currently implemented in com-
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Deceive A system action not revealed to the user
Modify that modifies input from a peripheral device
Influence to elicit a reaction or force a change in behavior.

Figure 1. Definition of covert impairment.

mercial products [84], and remains a technique routinely used
by cyber adversaries to perform coercion [47, 43, 98].

The goals of this paper are to provide a coherent framework
within which covert impairments may be discussed and to high-
light their usage in the wild. To better understand this practice,
we systematize knowledge across several fields and describe
four different ways interaction may become impaired, inten-
tional or not. We identify legitimate sources of impairments
and characterize their prevalence. Applications that imple-
ment covert impairments are then identified and characterized
within a framework that captures impairment mechanics, de-
signer’s goal and intent, and the user’s reaction. As a form of
deception, the use of covert impairments carries risks, such as
tricking users into performing undesirable actions or degrad-
ing task performance. We examine these risks and identify
other potential use cases for covert impairments.

DEFINITIONS AND BACKGROUND
We define a covert impairment as an intentional design consist-
ing of three elements. These include: 1) an act of deception; 2)
the modification of user input to a computer; and 3) influence
over the user’s behavior. Our definition is shown in Figure 1.
We describe each element in detail and motivate this definition
by describing designs that exhibit some, but not all, of these
elements.

Designs that deceive users
Deception occurs when a user’s belief about a system is
“demonstrably false” due to a system action or claim [1]. The
use of deception is widespread in HCI and ranges from malev-
olent, which aims to benefit the designer at the expense of the
user [26, 40], to benevolent, which aims to benefit both the
user and the designer [1].

Deception in HCI has long been considered taboo despite
there being legitimate use cases for deceptive design. While
malevolent deception encompasses designs considered to be
malicious or harmful to the user, such as dark patterns [40],
deceptive techniques considered to be benevolent have grown
to cover a wide range of legitimate use cases. Many of these
practices aim to bring the user’s mental model and system
image in synchrony. This includes anthropomorphic designs,
such as a game reducing the skill of a computer opponent to
make it seem more human like [93], and the concealment of
uncertainty, such as using a heuristic to estimate the amount
of time a long running processing will take.

Computer security has a long history of using deception [41].
Design choices are often motivated by the requirement to bal-
ance the needs of a single user (e.g., accessing a protected
resource) with that of all users (e.g., keeping resources com-
partmentalized). Deception is generally accepted and regarded
as benevolent when it is intended primarily for malicious

actors. For example, honeypots are illegitimate computer re-
sources used to lure attackers, enticing them to waste time and
expose tactics. Likewise, concealing the results of a failed
login attempt by not informing the user whether their user-
name or password was incorrect can also act as a deterrence
to attackers by making it more difficult to perform account
enumeration. This practice benefits the group (all users with
accounts on the website) at the expense of the individual (a
single user who mistypes their credentials must determine
which field needs to be corrected).

In the framework of Adar et al. [1], this work is concerned
with behavioral deception, which includes deceits that modify
the way a system responds to user input. Behavioral deception
generally aims to overcome a user’s physical limitations, such
as dynamically adjusting the pointer transfer function or the
use of semantic pointing [16] to increase pointing accuracy.
However, unlike the behavioral deception described in Adar et
al. [1], which aims to synchronize user mental model and sys-
tem image, the deception described in this work does exactly
the opposite. Covert impairments are deceptive because the
user is given a false impression of how the system interpreted
their input. The act of modifying input or injecting an input
error violates the user’s mental model, for example if pressing
a keyboard key has no effect.

Designs that modify input
On modern computers, there are up to a dozen individual com-
ponents working together to map a physical action (pressing
a key on a keyboard) to system state (printing a character on
screen). The act of typing on a keyboard includes the: physical
key, button and actuator, sensing mechanism (e.g., keyboard
matrix circuit), microcontroller, protocol to communicate with
the host (USB or PS/2), interrupt mechanism on the host,
operating system scheduler, keyboard driver, keymap for trans-
lating key codes to locale-specific characters, and application
itself (e.g., web browser). And if the application is remote, the
network stack.

Each component in this pipeline determines what effects the
user’s action will have. The effect may be intentional, such
mapping keys to uppercase characters in a “Caps Lock” state,
or unintentional, such as the latency between pressing a key
and seeing the result printed on the screen [95]. In this sense,
modifications to peripheral input can be introduced anywhere
along the pipeline.

This work is concerned with designs that intentionally modify
peripheral input. Many such designs exist, most of which aim
to increase task performance by predicting what action the
user intended to perform. For example, key debouncing ap-
plied on the keyboard eliminates the spurious keystrokes that
would occur as the circuit settles into a closed state [55]; the
autorepeat feature enables keys held down for a long duration
to be repeated with a single action rather than a series of sepa-
rate keystrokes; and an application can make modifications to
the key mappings, such as by making the “Enter” key behave
like “Tab” when filling out a web form [4].

Modifying input from a pointing device, such as a computer
mouse, is ubiquitous. Pointer acceleration is the method by
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which the displacement of the pointer on screen depends on
the speed of the device, enabling longer distances to be cov-
ered by short, quick movements. Other modifications, such
as pointer smoothing, adjustment of target dimensions, and
context sensitivity, aim to increase pointing task performance
[71, 12, 16]. The transfer function, which defines how physi-
cal motion is translated to pointer displacement, has remained
elusive and varies across different operating systems with re-
spect to parametric model and parameter choice [22]. There
also exist a range of assistive technologies that aim to increase
accessibility for disabled users, such as pointer motion smooth-
ing to reduce spatial jitter, and bounce keys to avoid spurious
keystrokes [92, 82].

The main difference between covert impairments and the tech-
niques described above is that of the designer’s goal: while
the techniques above aim to facilitate interaction, often by
bringing the system image closer to the user’s mental model
and increase task performance, covert impairments do exactly
the opposite. The modifications introduced through covert im-
pairments diverge the user’s mental model from system image
with the goal of influencing user behavior.

Designs that influence users
Designers may attempt to guide the user toward a particular
course of action by influencing their behavior. It is useful to
characterize methods of influence within Newell’s time scale
of human action [63], which defines a hierarchy of human
actions based on their respective temporal dynamics: biolog-
ical (milliseconds), cognitive (seconds), rational (minutes to
hours), and social (days to weeks).

At the rational level, aesthetic manipulation, such as the use of
color or placement of buttons in a prompt, can influence choice
outcome [26, 40]. At the social level, users on a professional
networking website might be rewarded with virtual insignia
for volunteering their information [19]. Advertisers frequently
utilize interface design to influence spending behavior and
drive users to click on links. These designs are referred to as
dark patterns [56]. The use of such techniques through estab-
lished psychological principles of influence is also ubiquitous
among phishing attacks, the goal of which is to convince a
user to reveal credentials or other secret information [89].

Not all designs that influence user behavior are malicious. The
same kinds of techniques can be leveraged to influence users
in neutral or positive way. In training and simulation environ-
ments, the gender of an avatar or human conversant can play
a role in whether users are receptive to changes in attitude
[97]. Likewise, subliminal cues in a virtual learning environ-
ment can increase knowledge retention [23] and influence the
outcome of choice tasks [14].

This work is concerned with the designs that influence users
within the cognitive level of Newell’s time scale. Covert im-
pairments do not attempt to, e.g., persuade the user to explic-
itly divulge information, but instead invoke a psychomotor
response that may lead to such an outcome. This is accom-
plished by enticing the user’s mental model to depart from
the system image, which can happen by: 1) inducing a wrong
belief in the system; 2) presenting an observation that conflicts
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Figure 2. Four kinds of impairments to human computer interaction.
In a normal scenario (top), motor action A performed by the human
causes system state A. An impairment is one of: spurious system state
(insertion), action with no effect (deletion), perturbed system state (sub-
stitution), or action with delayed effect (lag). H=human, C=computer.

with the user’s mental model; or 3) causing the user’s predic-
tions about how the system will behave to diverge [65, 81].
The result of this departure is an action taken by the user that
would not have occurred otherwise.

Relation to dark patterns
As a design practice that may be used to inflict harm upon
users, covert impairments are closely related to dark patterns
[40]. However, there are several key differences. Notably, not
all covert impairments are malicious whereas all dark patterns
are. Some impairments that elicit behavior are better described
by benevolent deception [1] and have valid use cases, such as
an implicit CAPTCHA for bot detection [35]. Likewise, not all
dark patterns are deceptive, e.g., nagging, whereas all covert
impairments are. Although many dark patterns are deceptive,
deception itself is not a defining feature.

Another key difference is that covert impairments and dark
patterns manifest at different layers on the computer. To draw
an analogy, consider the Open Systems Interconnection (OSI)
model [99]. Dark patterns manifest at the “application layer”:
they are dominated by user interface design choices such as
shape, color, and placement. Covert impairments manifest at
the “transport layer”: they modify input events before they
reach the application, such as pointer acceleration through a
transfer function.

KINDS OF IMPAIRMENTS
We start with a general discussion of interaction impairments.
An interaction impairment is a breakdown that occurs some-
where along the processing pipeline between the user’s physi-
cal action sensed by a peripheral device and the invoked sys-
tem state. While impairments may be unintentionally caused
by one of several legitimate sources, described in the next
section, covert impairments are those intentionally introduced
and hidden from the user. We characterize four different ways
that interaction may become impaired, intentional or not.

For the purpose of our definition, we view interaction as that
of mechanical determination [42]: a human action input to
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the system determines the system state. This view is implicit
within the keystroke-level model (KLM), which defines a set
of physical motor operators (actions) the user performs to ac-
complish a task [20]. Given this view, two discrete sequences
are of interest: the sequence of physical actions performed
by the user, such as pointing to a target, and the sequence
of system states that occur as a result of each action, such
as rendering the pointer at a different location on the screen.
When the system acts reasonably according to the user’s men-
tal model [21], such as the displacement of the pointer being
proportional to the physical movement, then no impairment
has occurred. This scenario is depicted in Figure 2 (top) where
motor action A causes system state A.

We borrow terminology from string metrics to describe the dif-
ferent kinds of impairments to HCI. Levenshtein edit distance
measures the distance between two discrete sequences by the
minimum number of edit operations needed to transform one
to the other: insertions, deletions, and substitutions [51]. We
characterize four different ways in which interaction may be-
come impaired, which include the three primitive string edit
operations and an additional operation that permits reasoning
about time. These are each depicted in Figure 2 and described
below.

Insertions are spurious system states for which the user never
performed a corresponding action. These often occur in or
around other actions the user did perform, making their pres-
ence more difficult to detect. For example, the mouse pointer
jumping to another location on screen during a pointing task,
or the text cursor moving to different position in a document
while typing, both common as described in the next section.
Spurious keystrokes have been around almost as long as the
keyboard itself. On older keyboards, the layout of the ma-
trix circuit resulted in “ghosting” (the sensing of a spurious
keystroke), a phenomenon that occurs when three adjacent
keys are pressed and a fourth is inadvertently sensed [29].

Deletions are user actions that are ignored by the system such
that there is no perceived effect or change in system state. This
may occur when the system is overloaded to the point that
peripheral hardware interrupts are unacknowledged and the
system appears “frozen”. They may also result from physical
defects, such as a loose cable, a missing or broken keyboard
switch, or dust on an optical mouse sensor. Deletions may
also be a limitation of the communication protocol, such as
the “masking” that occurs when more than 6 keys are simul-
taneously pressed on a USB keyboard [37]. In distributed
applications where user actions are transmitted over a network,
packet dropout has a similar effect.

Substitutions qualitatively encompass the most diverse set of
breakdowns that may occur. A substitution occurs when the
user’s action causes an unintended system state. With textual
input, this can result from an incorrect mapping of keyboard
scan codes. Modifications to the keyboard state can also result
in substitutions, such as inadvertently toggling the Caps Lock
state of the keyboard. Some authentication protocols even
anticipate this impairment by accepting the user’s password
with case reversed [24]. Substitutions for pointing actions
are prevalent. The transfer function used to translate physical

motion to pointer motion is often nonlinear (dependent on
pointer velocity) and context sensitive (attracting to nearby UI
elements or boundaries). While the transfer function aims to
bring the system image in synchrony with the user’s mental
model, it can disrupt this process when effects the user did not
intend are encountered, such “pointer snapping” when finer
resolution is preferred [15].

Lag occurs when the user’s actions cause a delayed system
state. There is an inherent lag associated with any electronic
sensing device, where the lower bound is formed by the speed
of light to transmit information from the sensor to the com-
puter. However, other components greatly contribute to lag,
including sensor mechanics, USB polling rate, and operating
system scheduling [95]. Lag is typically not perceived if it
remains within tolerable values, but as lag increases it can
alter the course of interaction through a degradation in human
performance [53].

UNINTENTIONAL IMPAIRMENTS
Interaction impairments that are not intentionally introduced
may be attributed to a legitimate source. For some appli-
cations, it is this very notion that masks the use of covert
impairments as a tool to elicit and measure human behavior,
as the impairments introduced are intended to be subtle and
remain undetected by the user. There are four main sources of
unintentional impairments.

Hardware defects
Faulty hardware and malfunctioning physical components
can impair interaction. This may occur when a sensor stops
working correctly or another component interferes with the
sensor. For example, a broken keyboard switch will result
in deletions if the circuit for that particular key cannot be
completed. Likewise, a sticky key can result in spurious input.
A swollen battery on a laptop or mobile device can cause
unexpected behavior, such as extraneous input to the keyboard
(insertions) and displaced touchscreen events (substitutions).

Software bugs
User interfaces are inherently asynchronous and input/output
bound. As a result, software bugs that result in interaction
impairments are common. Insertions and substitutions can
result from bad event handling, especially in distributed appli-
cations [73]. Stale updates to a client interface from a server
or out-of-order event processing in a text editor may result in
updates that do not reflect the actions the user performed. For
example, the “jumping cursor” bug is prevalent among web
applications [61]. When this occurs, the text cursor jumps
to another position in a document, after which characters are
inserted at the wrong location. Because the input events are
processed asynchronously, these kinds of bugs may be difficult
to replicate, identify the cause, and fix.

Deletions and substitutions can occur when a peripheral driver
is misconfigured or mismatched to the device. Typing on a key-
board with the wrong driver installed or an incorrect keymap
can result in substituted characters. Many touchscreens consist
of a transparent touch-sensitive material placed on top of the
screen. To accurately sense the location of touch, the device
must be calibrated either during the manufacturing process
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or before use [28]. As a result, miscalibrated devices can re-
port locations that differ from what users experience. These
kinds of calibration bugs can have implications for electronic
voting [47].

Resource constraints
Impairments can result from resource contention and other bot-
tlenecks to processing input events. On time-sharing systems,
applications must compete for CPU, system memory, network
bandwidth, and power consumption. Energy constraints can
result in either deletions or insertions, caused by, e.g., a low
battery in a wireless mouse or keyboard [7]. The effects of lag
on task performance and user perception are well-studied [53],
which can result from multiple processes competing for CPU
or high utilization of system memory. For example, keystrokes
are buffered during periods of high CPU contention, and on
touchscreen devices, even small amounts of lag may become
perceptible [46]. It is interesting to note that modern devices
generally exhibit greater lag than their vintage counterparts,
partly attributed to a more complex input pipeline [27]. Dis-
tributed applications must additionally deal with the effects
of network latency (packet transit time), jitter (variations in
latency), and dropout (lost packets) [70]. Network latency is
the sum of propagation (the physical distance separating two
hosts), transmission, processing, and queuing times [30].

User errors
The user is sometimes the source of interaction impairments.
Typing errors have been extensively characterized [75]. User
errors at the execution phase of typing can cause substitutions
due to misplaced fingers, deletions by not applying enough
force to actuate a key, and insertions by pressing two adjacent
keys together. The cost to correct these kinds of errors is
also well studied [8]. Extraneous input to either a keyboard,
mouse, touchscreen, or touchpad can result in spurious events,
although there exist methods to prevent this to some extent,
such as disabling the touchpad while the user is typing [50].
Impairments can also arise when the user has limited or in-
accurate knowledge about an interface [81]. The inability to
predict how a system will behave may result in the user per-
forming an action that has no effect (deletion) or the wrong
effect (substitution).

COVERT IMPAIRMENTS
The interaction impairments described in the previous section
may be legitimately caused by hardware defects, software
bugs, resource constraints, or user errors. While these are
unintentional, the idea of intentionally introducing an impair-
ment to influence user behavior has been applied in a diverse
range of applications across academia and industry. In this
section, we describe this phenomenon and then identify and
examine specific applications where it can be found.

To analyze covert impairments, we followed an inductive cod-
ing procedure similar to [40]. We started with a set of ex-
emplars encountered by ourselves and colleagues working
in related areas. From these exemplars, we extracted four
canonical impairments and noted the equivalence to string
edit operations. We then searched for other applications that:

1) modify user input; 2) don’t reveal to the user those modifica-
tions; and 3) decrease task performance. The last requirement
excludes assistive technologies that meet the first two criteria.

Finding additional applications that fit these criteria was non-
trivial due to differences in terminology across different fields.
For example: dropout=deletion, perturbation=substitution,
and lag=latency, to name a few. To gather a list of candidate
applications, we used all combinations of these terms with
{user input, input event, keyboard, mouse, pointer, click, touch-
screen} on general, academic, and source code search engines.
This resulted in a collection of about 100 candidates: scholarly
articles, patents, blog posts, and device manuals. Each item
was reviewed for inclusion as either an unintentional impair-
ment, covert impairment, or neither. The covert impairments
identified are summarized in Table 1 with an overview of the
framework provided below.

Overview
We characterize each covert impairment along five dimensions,
summarized in Figure 3: the modality and kind of impairment,
which capture the mechanics of the impairment; the designer’s
goal and intent; and the user’s reaction.

Impairment mechanics
The modality is the peripheral sensor through which the im-
pairment occurs. This could be a keyboard, pointing device,
or other sensor capable of modifying the system state. Note
that because the impairments we describe occur only within
the context of interaction, there must also be some feedback
to the user, such as a display screen.

The impairment itself is a modification to the input event pro-
vided by the sensor. The kind of impairment can be one of the
four canonical impairments: insertion, deletion, substitution,
lag, or some combination of these. Because the user actions
and system states each form a discrete sequence, any differ-
ence between these two sequences can be stated in terms of
the four impairments.

Designer goal and intent
Covert impairments differ greatly with respect to the designer’s
goal for some specific outcome in the course of interaction,
which can be to elicit information from the user, coerce the
user to perform an action, or induce a chosen affective state.

Elicit: Because a covert impairment departs a user’s mental
model from the system image, they often need to be corrected.
This involves the user first realizing that an error has occurred
and then taking the necessary actions to bring the two models
back in synchrony. In this view, an impairment is a kind
of stimulus to the user, with the response being the actions
the user performs to correct it. An application may use a
covert impairment to elicit user behavior, which might reveal
information such as the individual’s identity or age [77], or
could simply indicate that the presence of a human user as
opposed to automated software.

Coerce: With a goal to coerce, the result of the user’s reaction
is of interest rather than the reaction itself. The designer may
coerce the user to interact with a particular UI element, reveal
sensitive information, e.g., a password, or perform some other
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passwor
d

click!

Coerce

Elicit

Induce

Benevolent

Malevolent

Individual

Group

Deletion

Substitution
A B

Lag
…

Insertion

A

A
A

Figure 3. Covert impairments are characterized along five dimensions: modality, kind of impairment, goal and intent of the designer, and user reaction.

(presumably) undesirable action. It may never become appar-
ent to the user that an impairment occurred, as applications
that use coercion go to great lengths to hide the presence of
the impairment, as discussed below. Within the dark patterns
framework, coercion is similar to forced action with the key
difference being that a forced action typically enables access
to a new feature; coercion occurs unknowingly.

Induce: Covert impairments influence the interaction process
by forcing the user to make errors, perform repetitious actions,
or wait for the system to respond. As a result, they can alter
the user’s affective state, degrade task performance, or even
provide entertainment value. The presence of covert impair-
ments might invoke a chosen affective state, such as stress
or anxiety, especially when a reward is at stake. They may
also engage the user and invoke anticipation or excitement by
making a task more challenging.

Closely related to the designer’s goal is their intent. The
designer’s intent largely characterizes which party (user or
designer) will benefit from the impairment. Although intent is
more of a continuum [1], we discretize intent into two classes.
With malevolent intent, the designer prioritizes their own needs
over the needs of the user. In this case, there is risk of harm to
the user without any perceived benefit. With benevolent intent,
the needs of the user are either prioritized or balanced with the
needs of another party. There still may be risk of harm to the
user, but this risk is minimized or appropriately balanced with
other needs, such as balancing the security of a user’s account
with difficulty to gain access.

User reaction
To achieve one of the goals described in the previous section,
the designer expects the user to react in a particular way. This
reaction can be broadly categorized according to whether the
designer is relying on individual or group behavior.

Individual: Users exhibit unique and identifiable behavior
when interacting with a computer interface, resulting from
idiosyncratic factors such as motor skill, cognitive ability, and
physiology [34]. Although these differences pose a challenge
for HCI design [32], they have enabled other applications.
Interaction with keyboard, mouse, touchscreen, and other
HCI modalities enables user identification and profiling to be
performed [2]. Related work has leveraged between-subject
differences in HCI behavior to diagnose medical conditions,
including Parkinson’s disease [39], and to detect users who are

being deceptive [13]. These applications are possible because
of the individual differences in behavior that persist over time.

Group: Humans are largely bound by the same set of physio-
logical and cognitive constraints. It is this principle that gives
rise to the general laws that characterize the way members of a
group will behave when interacting with a computer. Different
users experience about the same amount of difficulty when
performing pointing tasks [36] and operating a keyboard [75].
They are also bound to the same perceptual limitations, and as
a result, vulnerable to the same kind of manipulation through
interface design [40]. Covert impairments may leverage these
between-subject similarities, for example, to differentiate be-
tween a human and a bot [85] or coerce a user to click on
a malicious element by leveraging a common psychomotor
reaction [3].

Impairments that elicit
There exist several commercial products that use covert im-
pairments to elicit behavior. These applications influence the
user’s behavior to reveal their identity, demographic attributes,
and the presence of a human user.

User identification
Keystroke and mouse biometrics are techniques by which
users are identified based on between-subject differences in
typing and pointing behavior [2]. These are largely passive
techniques; mouse events and keystrokes are monitored while
the user performs a routine activity, such as typing login cre-
dentials or filling in a form. Covert impairments take this
technique a step further by making active measurements dur-
ing this process and gauging the user’s reaction, which can
further reveal idiosyncratic tendencies.

Cognitive biometrics is a technique in which pointer motion
events are perturbed such that the user must perform a cor-
rective action to reach their anticipated target [78]. Motion
events are inserted while the user performs a pointing task,
resulting in a trajectory that diverges from the user’s physical
action. The way in which the user corrects the deviated path is
relatively unique, considering features such as reaction time,
velocity, acceleration, and angular variations. Although this
technique was originally intended for benevolent purposes, it
could also be used to violate user privacy over anonymizing
networks such as Tor.
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Application Modality
Impairment

Goal Intent Reaction Reference
I D S L

User identification Pointer • Elicit Ben. or Mal. Individual [78]
Fraud detection Pointer • • • Elicit Benevolent Individual [84, 85]
Bot detection Keystroke • Elicit Benevolent Group [35]

Electronic voting Touchscreen • Coerce Malevolent Group [47, 10]
Clickjacking Button • Coerce Malevolent Group [43, 3, 98]

Cursorjacking Pointer • • Coerce Malevolent Group [54, 33, 49, 68]
Strokejacking Keystroke • Coerce Malevolent Group [58, 52]

Affective computing Keystroke • • Induce Benevolent Group [48, 76, 31, 72]
Performance modeling Pointer • • Induce Benevolent Group [66, 17, 94]
Gaming/entertainment Joystick • • Induce Benevolent Group [67, 44]

Table 1. Summary of applications that use covert impairments.

Fraud and bot detection
User interface automation is frequently employed for fraudu-
lent and malicious purposes, such as to create fake accounts,
distribute spam, and perform denial of service attacks. This
requires automated software to perform navigation, text entry,
and pointing tasks. To prevent this kind of abuse, users are
required to pass a Completely Automated Public Turing test
to tell Computers and Humans Apart (CAPTCHA), a kind
of challenge thought to be difficult for machines but easy for
humans [90]. As machine learning is able to solve percep-
tual challenges with increasingly better accuracy [96, 18, 38],
CAPTCHAs have become more difficult for human users. It is
therefore desirable to design a CAPTCHA that is implicit, or
transparent to the user [11]. Some recent techniques rely on
user reactions to covert impairments.

Malboard is an attack that automates text entry, injecting mali-
cious commands to a computer through a keyboard interface
after it has learned the victim’s behavior [35]. Because it mim-
ics a human user, this enables it to bypass existing detection
mechanisms based on keystroke dynamics. As a defense, the
computer may generate spurious keystrokes while the user
types. The user’s reaction to these insertions is an indica-
tion that the user is human since correcting the impairment,
e.g., pointing to the inserted character and then deleting it, re-
quires a closed-loop feedback mechanism. When the spurious
keystrokes go uncorrected, it is assumed that the text entry
was performed by an automated device.

The trademark Invisible Challenges encompasses several
patented techniques that implement covert impairments to
elicit behavior [85]. These are used in a commercial product
designed to detect fraud and automation by analyzing how
users react to impairments applied to the mouse pointer. Im-
pairments include: inserting motion to elicit a correction to
the pointer trajectory; substituting motion events with smaller
deltas so the user must exaggerate or repeat the same action;
and deleting motion events by making the pointer disappear
altogether, after which the user must move the mouse to reveal
the location of the pointer on screen. Like the Malboard
defense, these techniques provide an implicit CAPTCHA
through the user’s reaction.

Impairments that coerce
Covert impairments that influence the user to perform a chosen
action are coercive, and applications that utilize this technique
are generally malevolent: they place the needs of the designer
over the needs of the user.

Click-, cursor-, and, stroke-jacking
UI redressing is a technique in which an interface is modified
to coerce a user to perform an undesirable action [43]. Such
an attack is feasible when different applications share the
same screen canvas, such as a webpage that includes both
primary and third-party content. Covert impairments comprise
a subset of UI redressing attacks that manipulate user input.
These attacks are used to spread malware, manipulate online
reputation metrics, and cause a victim to divulge sensitive
information.

Clickjacking attacks have been around for nearly two decades
[45] but remain a widespread issue [98]. In a clickjacking at-
tack, the victim is coerced to interact with a malicious element
in a webpage using the mouse button. This is accomplished
through event substitution, whereby the mouse button event
on the intended element is substituted for an event passed to a
malicious element. A transparent element, not perceptible to
the user, placed on top of the malicious element will register
any mousedown and mouseup events performed at that loca-
tion. Alternatively, JavaScript can be used to quickly display a
malicious element or remove a benign element somewhere on
the webpage before the button event occurs. This same kind of
attack has been leveraged for touchscreen and keyboard input
[64, 52]. In a strokejacking attack, the victim’s keystrokes are
diverted from a benign element to a malicious element in a
similar manner [58].

Cursorjacking is arguably more sophisticated and makes use
of several kinds of impairments [43]. In one variant, the
mouse pointer is rendered at a different location on screen,
either through spoofing or the use of an elongated cursor with
transparent region. The click point set by the designer is
located at a constant offset to the rendered cursor such that
when the victim points to and clicks on a benign element, the
click event is registered by a malicious element located at that
same offset [33, 54, 49, 68]. A canonical example of this
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Figure 4. Coercive impairments to the pointer. Left: pointer motion
is substituted by rendering the pointer at on offset from the click point
(denoted by the ×). Right: inserted pointer motion causes the user to
navigate to a malicious element. The dotted line represents the rendered
path and solid line represents the actual path. The pointer starts at (1);
leftward motion events are inserted at (2); the user compensates with
rightward motion at (3) and reaches the malicious target.

attack is shown in Figure 4 where the benign pointer location
is substituted for a malicious one.

Some of the attacks described above can be detected with
simple rules that ensure the integrity of the display and pointer
[86, 43]. However, pointer destabilization, a cursorjacking
variant, is particularly difficult to detect [3]. In this attack,
mouse motion events are gradually inserted while the user
performs a pointing task. This causes the path of the pointer
to deviate from the user’s physical action. Upon noticing this
error, the user reacts by correcting the pointer trajectory in
such a way that the actual pointer location ends up over a
malicious element. An example of this attack is shown in
Figure 4. For the attack to work, users must correct the pointer
trajectory in a predictable way, a kind of group behavior that
has been the focus of prior work [17, 94].

Electronic voting
Similar to clickjacking, coercive attacks on electronic voting
machines have emerged. Electronic voting machines offer
reduced operating costs over manual counting and reduced
time to aggregate and disseminate results. However, the in-
tegrity of using these machines continues to be a concern, as a
variety of ways in which they may be compromised have been
demonstrated [10]. In particular, electronic voting machines
that utilize a touchscreen interface are susceptible to coercion
through covert impairments.

The touchscreen display on many electronic voting machines
is composed of a transparent touch-sensitive layer placed on
top of a display screen. The touch-sensitive layer is typically
a resistive sensor, as opposed to the capacitive sensor found
on most smartphones (see [91] for a survey of touchscreen
technologies). Resistive touchscreens must be calibrated to
ensure that the user’s tactile input is registered to the correct
location on the display. In a calibration attack, an attacker
adjusts the calibration settings to either prevent votes from
being registered or coerce a user to vote for another candidate.
In this way, a miscalibrated device will perform substitutions
by sensing the user’s tactile input in a different location on the
screen, or deletions by disabling parts of the screen altogether
[10]. This defect on electronic voting machines has been ob-
served in practice [47], and when performed at scale, this kind
of attack has the potential to compromise the election process.
Even when properly calibrated, users at various heights voting
for the same candidate may touch different parts of the screen
due to differences in viewing angle [28].

Impairments that induce
Covert impairments can both frustrate and entertain. They
remain an important research tool for better understanding
how humans interact with and react to an interface, especially
under degraded conditions. As a research tool, the use of
covert impairments can induce a particular affective state by
making a task more difficult and reveal the limits of the human
psychomotor system.

Affective computing
Keystroke and mouse dynamics have been recognized as un-
obtrusive modalities to measure affect [100]. However, ma-
nipulating keyboard and mouse input also has the ability to
induce affect. Stress or anxiety may be induced by covert im-
pairments, especially during tasks that involve a performance-
based reward. This is useful for research because it enables the
measurement of physiological responses in different affective
states. Protocols have involved frustrating the user by intro-
ducing lag to pointing tasks during gameplay with monetary
reward [76]. Likewise, a sense of loss of control is simulated
by ignoring some keystrokes [31, 72].

Cognitive science
A general understanding of the psychomotor system has been
a major driving force in HCI research, culminating in seminal
works such as Fitts’ Law [36] and Salthouse’s characteriza-
tion of typing phenomena [75]. Extensions to these efforts
have involved testing the limits of the human psychomotor
system by intentionally degrading interaction. The presence of
lag, between the user’s physical action and perceived system
state, places a fundamental constraint on the human-computer
feedback loop by making interaction tasks more difficult. Vari-
ations in lag, or jitter, can further increase this difficulty. The
primary mechanism for studying performance degradation is
through a covert impairment, such as intentionally introducing
lag to the input processing pipeline.

MacKenzie and Ware first characterized Fitts’ index of dif-
ficulty as a function of lag [53], followed by [69] and [70]
wherein the effects of changes in lag (jitter) and inserted mo-
tion events (spatial jitter) were examined. When subjected to
the relatively higher cost to perform an action, [66] observed
that users spent more time planning and less time acting to
cope with the impairments.

The work of [17] and [94] considered how users make correc-
tions when exposed to several kinds of impairments during a
pointing task. In [17], the cursor changed direction of motion
(substitution) or suddenly jumped to a new location (insertion)
to test the similarity of corrections made through a pointing
device to those made with the hand. Reactions to the impair-
ments were surprisingly consistent between subjects, and this
work may inform future cursorjacking attacks that exploit the
way users react to pointer manipulation [3].

Entertainment
Modifications to peripheral input are prevalent in gaming and
entertainment industries. Input events are typically modified
so that the system state better matches user intent, for example
by making the keyboard seem like an analog device with the
use of an attack, decay, sustain, release (ADSR) curve [6].
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This technique is ubiquitous in electronic musical instruments
wherein an envelope generator creates sound [87]. While
these manipulations provide entertainment value, some games
impair input to induce a state of excitement and encourage
users to part with their money.

The claw crane, a kind of “skill with prize” game with several
variants, allows the user to aim a claw that reaches down
into a pile of prizes in an attempt to pick up and retrieve a
prize. To ensure that not everyone is a winner, impairments
are introduced to the button or joystick input. Typically, the
claw will apply little force making it impossible to retrieve a
prize, except for a small percentage of users for which the claw
operates with enough force. Only 1 in 18 users are destined to
retrieve a prize, depending on the game and adjustable settings
programmed by the vendor [67]. This is a form of substitution,
where the user’s intended action (“strong claw”) is replaced
with something else (“weak claw”). Claw crane games have
been criticized, and in many places regulated, as there is little
difference between these kinds of games and gambling. In
response, the American Amusement Machine Association
enacted the Fair Play Pledge, part of which specifies that “the
player’s input controls the outcome of the game” [5].

As a way of providing entertainment value, some games uti-
lize covert impairments to dynamically adjust game difficulty.
Rather than an absolute difficulty setting, dynamic difficulty
adjustment enables a game to better match the player’s skill
level as measured by, e.g., player health or accumulated points
[44]. The rationale for dynamic difficulty adjustment is that
the game should be not too easy nor too difficult; there is
a “zone” in which satisfaction and comfort are maximized.
Adjustments to game difficulty may be achieved by introduc-
ing covert impairments. The primary mechanism for this is
substitution, whereby the strength, accuracy, and impact of a
player’s actions are decreased for players of greater skill, and
increased for players of lesser skill [44].

DISCUSSION

Ethical and practical considerations
Covert impairments have legitimate use cases, in both cyber-
security and as a research tool. But because they are intended
to influence user behavior, and are used widely for illegitimate
purposes, some considerations toward users’ well-being must
be made.

Involuntary actions: Covert impairments are already widely
used with malevolent intent [10, 3]. Beyond web-based attacks,
covert impairments have the potential to alter the outcome
of critical HCI tasks, such as an election conducted through
electronic voting. The core issue is that impairments provide
a means to coerce the user to perform an action chosen by
the designer. This abuse degrades HCI, and the detection and
prevention of such impairments should remain an active area
of research [86, 98].

Resentment: Too many impairments can have the effect of
inflicting frustration or stress upon the user [76]. Combined
with the act of deception, users may feel resentment if they
become aware that, e.g., their actions do not have the intended
consequences. This is almost surely the case for clickjacking

and related attacks, but impairments used in other contexts
should be cognizant of potentially inducing negative affect.

Privacy: Unlike other behavioral biometrics which are pas-
sive in nature, the use of covert impairments forces a user to
interact with the computer in order to correct the impairment.
They may serve as a form of access control, but could also be
used to track or deanonymize users based upon their behavior.
Some recent tools have been developed that aim to limit the
effectiveness of such identification and profiling tools by in-
troducing imperceptible perturbations to the input, such as by
randomly delaying keystrokes [59]. It is not clear if such tools
remain effective when covert impairments are used.

Cost vs return: For applications that use impairments to elicit
behavior for a legitimate purpose, such as fraud or bot de-
tection, a careful balance must be struck between the impair-
ment rate and the detection rate. Covert impairments have
an implicit cost, which is the decrease in task performance
because they require the user to perform some additional ac-
tion that would not have been performed otherwise. Whether
this is acceptable or not may depend on the sensitivity of the
application.

Timing: As a practical consideration to using covert impair-
ments as a CAPTCHA, it is necessary to think about when
is the right time to introduce an impairment. For example, a
designer could choose to insert motion immediately before a
pointing task, at the midpoint between the start and the target,
or when the pointer nears the target. The work of [94] may
inform this choice, which investigated how users react to per-
turbations introduced immediately before or during various
pointing tasks.

Sustainability: Some work has demonstrated that users de-
velop coping mechanisms when input is impaired [66]. For
applications that perform user identification, it is not clear
whether repeated exposure to the same impairment would
result in similar adaptations that increase within-subject dif-
ferences over time. As users acclimate to the presence of a
particular impairment, they may adjust their reaction strategy,
or choose to ignore it altogether [9].

In balancing these considerations and determining the extent
to which a covert impairment alters the course of interaction,
we propose measuring impact at three different levels:

Task impact: Covert impairments consist of three primitive
string operations and lag. Therefore, the generalized minimum
edit distance provides a metric with which we may compare
discrete event sequences before and after the impairment as a
way of quantifying the magnitude of the impairment.

User impact: On top of increased task difficulty, impairments
may carry costs to the user, such as increased cognitive load
or negative affect. These may be measured objectively, e.g.,
through a user’s keystroke dynamics, or subjectively through
self reporting. For example, [48] reported significantly higher
levels of self-reported frustration in the presence of lag.

Population impact: Because some users might be more or
less affected by an impairment than others, the proportion of
users vulnerable to impairment is of interest. For example in
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[3], 99% of users were vulnerable to a pointer destabilization
attack, a kind of substitution impairment. Note that the term
“vulnerable” is a bit a misnomer here since one may likewise
consider how many users react to a benevolent impairment,
such as a CAPTCHA [35].

Detection and countermeasures
Defenses against covert impairments could range from de-
tection, in which the presence of a covert impairment is es-
tablished and can be avoided if chosen, to prevention, where
the mechanism that introduced the impairment is removed
or neutralized. These defenses may be considered from two
perspectives depending on the designer’s intent.

Malevolent impairments: From the perspective of the user, it
is desirable to both detect and prevent malevolent impairments.
The motivation for doing so could be to mitigate informa-
tion leaked through behavior for increased privacy [59] or to
ensure the design of trustworthy systems. Detection can be
performed through closed loop measurements, for example
using techniques similar to EchoMouse [22] and LagBox [95]
where ground truth events are physically induced on a sensor
and then measured on the display. From this, the presence of
insertions, deletions, substitutions, or lag can indicate an im-
pairment. Toward prevention, concepts in the W3C UI safety
specification [86], such as cursor integrity, can be leveraged.
These ideas may be extended to other modalities, such as
“caret integrity” for keyboard input, or implemented at other
layers, such as within the OS instead of the browser.

Benevolent impairments: From the perspective of the designer,
it is desirable to ensure that impairments remain effective and
are not circumvented. Designing an effective CAPTCHA (high
accuracy, low usability cost) is nontrivial, where successful
methods invoke behaviors that have both low within-subject
and low between-subject variability. It would also be necessary
to consider automation attacks against the impairment, as
methods to defeat traditional image-based CAPTCHAs have
advanced significantly [38].

Related work
Tangential to covert impairments, several lines of research
have emerged that either leverage or examine how changes to
an interface influence users.

Concealed information tests: Modification to the UI itself,
rather than user input, can be used to elicit behavior from
users. When presented with an unexpected question, a user’s
keystroke dynamics can indicate whether that individual is be-
ing deceptive [60]. This could be implemented on a web form,
for example, when applying for an insurance policy. Likewise,
the concealed information test can reveal deception through
mouse pointer motion relative to the strategic placement of UI
elements [88].

Reflexive eye movements: Eye movement is an emerging bio-
metric modality. The works of [79] and [80] take this a step
further and consider reflexive eye movements in response to
changes in the interface. They consider the user’s eye move-
ment reactions to a stimulus that jumps around on the screen.
Like covert impairments, changes to the UI elicits behavior

that can reveal between-subject differences. But these changes
occur at the interface level, and not along the input processing
pipeline.

Subliminal cueing: Subtle design choices can also be used to
persuade users. Like coercion through impairments, sublimi-
nal cueing may be performed through the choice or design of
UI elements [74, 23, 14, 62]. For example, a barely perceptible
image has the potential to prime the outcome of choice tasks
[14]. Similarly, the presentation of a stimulus for a duration
under the perceptual visual threshold can increase learning
performance when the stimulus provides a relevant cue [23].
Again, the main difference from impairments is that these de-
sign choices affect the UI itself and not the interaction that
takes place.

Difficult interfaces: The design of interfaces that are difficult to
use, either intentionally or because of a bug, provides insight
on how users react and adapt to impairments. In a technique
called “frost brushing”, button labels remain hidden until the
user hovers the pointer over the label after which the text is
revealed [25]. Despite initial decreased task performance, this
technique increased engagement and spatial learning. Like-
wise, in a gesture recognition system with errors intentionally
introduced, users were found to adapt to the errors at a rate
proportional to the misrecognition rate [9]. Unintentionally
difficult interfaces have had other unexpected outcomes, such
as increased communication in collaborative environments to
foster workarounds for impaired input [73].

CONCLUSIONS AND FUTURE WORK
Impairments are breakdowns between the user’s physical ac-
tions and the induced system state. In this paper, we system-
atized four kinds of impairments to HCI, characterized by
the three primitive string edit operations: insertions, deletions,
substitutions, and a fourth primitive, lag. Unintentional impair-
ments arise from a variety of sources, and covert impairments
are deliberate attempts to mimic these.

The use of covert impairments is largely concentrated in cy-
bersecurity, and it is ironic to note that the same technique
is used as both an attack and defense. Perturbations to the
mouse pointer, as a method to elicit behavior, provide a means
to verify the presence of a human user or to reveal the user’s
identity. However, the same kind of perturbations applied in a
malicious way are leveraged to coerce a user into performing
an undesirable action, such as clicking on a link. This di-
chotomy arises based on the context in which the impairments
are introduced: in a benign environment on the one hand, and
in the presence of malicious content on the other [43].

Within the web security community, the mitigation and detec-
tion of covert impairments provide some means of ensuring
the integrity of HCI during sensitive tasks, such as voting or
logging into a bank website. This work may be informed by
some of the research performed within the HCI community
that examines user reactions to impairments [94].
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